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Abstract. The index of refraction (n) of materials and/or tissues depends on their physical properties and serves
as a source of optical contrast in imaging. The variations of the index of refraction have also been investigated for
diagnostic purposes in various fields, such as hematology, oncology, etc., since they can signify disease and cell
dynamic changes. Optical coherence tomography (OCT) has been used in the past to measure the index ex vivo.
However, most methodologies described in the literature are not appropriate for in vivo imaging since they
require either a mirror below the sample or a complicated imaging setup and algorithms. We describe a tech-
nique that uses two images, obtained at different angles, to estimate the index of refraction and can, thus, also be
applied in vivo. The index of refraction is calculated from the path-length difference observed by the OCT beam
at the two different angles. When a reflector is not available, the path-length difference can be estimated using
image registration and the cross-correlation of adjacent A-scans. The proposed technique was validated exper-
imentally using both clear and scattering samples. The resulting values of the index of refraction were within ∼1%
of the expected. The main limitation of this technique is the effect of misalignment on the results, requiring the
precision provided by an angular-resolved OCT system. These very promising results provide evidence that the
dual-angle method should be further investigated and validated on human tissues so that it can be developed
into a clinically useful diagnostic tool in the future. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
[DOI: 10.1117/1.JBO.24.10.106001]
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1 Introduction
The index of refraction (n) is an important intrinsic optical
parameter of tissue that has been recently exploited for various
applications. All materials have unique n values, which are
associated with their electrical permittivity. Medical imaging
systems use n as a source of optical imaging contrast to view
tissue without the need of labeling or extrinsic contrast agents.
Studies have shown that the distribution of n in tissue, using data
from medical systems such as computed tomography and optical
coherence tomography (OCT), could also be used as a bio-
marker for medical diagnosis.1,2 Microbiology, hematology, and
infectious disease studies show that n distribution can provide
valuable information about cellular growth and division and
bacteria identification.3–5 Various methods exist for the measure-
ment of n of different materials including tissues.6–8

Using OCT, a common method to estimate n is based on
measuring the path-length change from a sample placed over
a reflector.9 Although this method is only appropriate for ex vivo
measurements, its accuracy and simplicity make it ideal for
the verification of newly developed techniques. This method
exploits the fact that the optical path-length measured by OCT
is proportional to the index of refraction. Thus, measuring the
same distance in air and under a known thickness of tissue (L),
the index of refraction can easily be calculated as n ¼
ðLþ L 0Þ∕L (Fig. 1).

Other methods that have been proposed depend on very com-
plicated experimental setups and algorithms and are also very
hard to apply in vivo. They either require specific hardware
to precisely track the focus and calculate the path length and/
or require iterative methods to calculate the index of refraction
by fitting to assumed models, which are processing-intensive
and time-consuming. Focus tracking method and optical path
shifting methods were evaluated for simultaneously calculating
refractive index and thickness, in samples with different scatter-
ing properties. These methods required specialized hardware
and multiple measurements. In addition, the optical path shifting
method is limited to in vitro measurements albeit at a high
precision.10 Gradient refractive index profile was also retrieved
by iterative fitting of the optical path calculated by the ray trac-
ing method, with that experimentally measured using OCT in
the isolated crystalline fish eye lens.11 Further studies have dem-
onstrated the calculation of the index of refraction of isolated
mouse crystalline lens to determine whether index changes
occur across age, due to gene mutations or with form deprivation
myopia.12,13 Angularly resolved low-coherence interferometry
to measure the phase index of refraction of pure silica by taking
various thickness measurements at different incidence angles
was also demonstrated but was only applied to nonbiological
samples.14 Recently, a new study formulated a new method,
using FD-OCT measured optical path lengths (OPLs) and prop-
erly selected spectral components of FD-OCT interference
spectrum, to simultaneously measure path length and index
of refraction.15 However, this method has not been demonstrated
in vivo and the authors expressed concerns regarding the detri-
mental effects of speckle and beam aberrations caused by tissue.*Address all correspondence to Costas Pitris, E-mail: cpitris@ucy.ac.cy
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Even more recently, a refractive index correction algorithm that
can find and correct the refractive index of all layers in a multi-
layer tissue, simultaneously, was also proposed. This algorithm
can exploit parallel processing hardware thus achieving short
processing times and is not affected by speckle.16 This technique
was demonstrated on phantoms and skin tissue. A new method,
appropriate for in vivo and in situ measurement of n in tissues,
without the need for a reflector as a reference, with minimal
postprocessing and hardware modifications, is proposed here.
Such a technique could be developed into a useful in vivo diag-
nostic tool in the future.

2 Theory and Methods

2.1 Theory

The proposed technique is applicable to both scattering, e.g.,
tissue, and nonscattering, e.g., glass, samples. When a sample,
of any kind, is horizontal, the light is incident on the glass per-
pendicularly and reaches the bottom of the sample without
changing the direction. The OPL (L1) from the top to the bottom
surface of the sample is equal to the sample thickness (d) multi-
plied by the index of refraction (n). If the incidence is at an
angle, the beam is refracted and, as it passes through the
medium, it follows a path length (L2) that is longer than that
of perpendicular incidence [Fig. 2(a)].

Given that the path lengths and incidence angles can be
measured from the OCT images, the index of refraction can be
estimated, using Snell’s law’s, as
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If the beams in both images are at an angle [Fig. 2(b)], the equa-
tions become:
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The path lengths (L1 and L2) can be measured directly from
the images, and the incidence angles (θ1;1; θ1;2) can also be mea-
sured directly from the angle of the top surface of the sample.
This approach was verified using samples placed over a reflector
so that the path-length change could be easily measured and, at
the same time, use the same reflector as a reference for estimat-
ing n using the technique described by Tearney et al.9

However, distinct, highly reflective, structures are rarely
present in tissue. To apply this technique in vivo, a different
approach is required to estimate the path-length change. This
can be achieved by first registering and aligning the two images,
with a rigid affine transformation, and subsequently using the
cross-correlation of corresponding A-scans from each image
to estimate the path-length change for each A-scan. Affine
registration is an intensity-based linear mapping technique that
secures points, straight lines, and planes. It consists of scaling,
rotation, and translation, and all pixels go through the same
transformation. It is, usually, used to improve geometric distor-
tions such as differences in image’s size. The affine transforma-
tion can be described as

EQ-TARGET;temp:intralink-;sec2.1;326;386

x 0 ¼ tx þ a1xþ a2y
y 0 ¼ ty þ b1xþ b2y

;

where tx and ty refer to the translation vectors; x 0 and y 0 are the
original points; and a1, a2, b1, and b2 are the affine transforma-
tion parameters.17

After affine registration, the images are matched in rotation
and translation. However, the second image is distorted, in
depth, relative to the first because of the elongation of the path
lengths due to the larger angle of incidence [Fig. 3(b)]. The
cross-correlation is, therefore, expected to have maxima, first,
at the 0 lag and then, again, at the lag, which depends on the
magnitude of this distortion. The path-length change, ΔL, is
estimated from the lag of this second maximum of the cross-cor-
relation [Fig. 3(c)]. Since the path length of the second image,
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Fig. 1 Index of refraction calculation based on the path-length differ-
ence observed in the OCT imaging of samples with different indices of
refraction.9
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Fig. 2 Incidence angles and path lengths of beams perpendicular and at an angle to the samples.
(a) Perpendicular (i) and at an angle (ii) incidence on the sample. (b) Two samples with different incidence
angles θ1;1 (i) and θ1;2 (ii).
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L2, can now be calculated by the path-length change, i.e.,
L2 ¼ L1 þ ΔL, the index is, then, calculated by Eq. (2):

EQ-TARGET;temp:intralink-;e003;63;591n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
1 sinðθ1;1Þ − ðL1 þ ΔLÞ2 sinðθ1;2Þ

L2
1 − ðL1 þ ΔLÞ2

s
: (3)

2.2 Experimental Methods

A swept source OCT system, with 1.3-μm center wavelength
and 12-μm resolution in air (Santec IVS 300), was used to image
samples of glass, cucumber, and rabbit trachea. The system
operated at an A-scan rate of 20 kHz and collected raw inter-
ferometric data corresponding to a physical size of 5 × 5 mm
(512 × 2018 pixels). Each sample was placed on a vertically
mounted rotation stage (0.01-deg accuracy), which was rotated
manually using a micrometer. For each sample, n and the sample
thickness (L) were measured using the Tearney et al.9 method,
which served as the reference value. Subsequently, n was esti-
mated from the path-length difference of the dual-angle images.

To verify the technique, the mirror below the sample was ini-
tially used to measure the path-length changes. To prove the
applicability of the technique to in vivo tissue imaging, the index
of refraction was also calculated with the cross-correlation lag
method. In this case, no mirror reflection was used. All methods
were applied to the same sample images to ensure that the
results were comparable. The applicability of the proposed
method was evaluated, first, on uniform, nonscattering, glass
and, subsequently, higher scattering samples (cucumber) with
more complicated structures and varying thicknesses and angles
of incidence. The accuracy of the results was evaluated relative
to the reference values. Images of glass, cucumber slices, and
freshly excised rabbit trachea were acquired at different inci-
dence angles, ranging from 5 deg to 20 deg, with eight repeti-
tions for each combination.

3 Results
Initially, the proposed methodology was tested on glass. Images
of glass were acquired at different incidence angles, ranging

0 lag
Next max 

(a) (b) (c)

Fig. 3 Path-length change estimate from two OCT images taken at different incidence angles. The
images are first (a) registered and (b) aligned. (c) The cross-correlation of corresponding A-scans from
the aligned images exhibit distinct maxima.
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Fig. 4. (a), (b) Glass. (c), (d) Cucumber. The angles θ1;1 and θ1;2 for the glass were 4.5 deg and 11.8 deg,
respectively, whereas for the cucumber, those angles were 0.9 deg and 12.2 deg, respectively.
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Table 1 Index of refraction estimates.

Reference
Path-length changes measured

using a reflector
Path-length changes measured

using Xcorr

Mean Std Mean Std Error % Error Mean Std Error % Error

Glass 1.509a N/A 1.530 0.091 0.021 1.36 — — — —

Cucumber 1.369b 0.015 1.379 0.025 0.009 0.688 1.354 0.024 0.015 1.097

Rabbit trachea 1.391b 0.002 1.390 0.001 0.001 0.001 1.392 0.002 0.001 0.001

aProvided by the manufacturer.
bMeasured using the method of Tearney et al.9
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Fig. 5 (a), (b) Portions of the original OCT images of cucumber (Fig. 4), at different incidence angles.
(c) The registration of (b) on (a). (d) The cross-correlation of the A-scans indicated by the dashed lines.
(e) A zoomed region (indicated by the dashed box) of (d). The arrow points to the first maximum after
the zero lag.
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Fig. 6 (a), (b) The original OCT images of freshly excised trachea, at different incidence angles.
The labels refer to the epithelium (e), the submucosa (sm), and cartilage (c). (c) The portion of (a).
(d) Portion of (b). (e) The registered version of (d). (f) The cross-correlation of the A-scans indicated
by the dashed lines in (c) and (e). The arrow points to the first maximum after the zero lag (not shown
here for better visualization of the peaks).
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from 5 deg to 20 deg, with eight repetitions for each combina-
tion, for a total of 48 images [Figs. 4(a) and 4(b)]. The average
results are shown in Table 1. When compared to the reference
value of the index of the particular glass, n ¼ 1.509, the error
was 1.36%. The accuracy and precision of the path-length mea-
surements were also evaluated from the glass measurements.

Imaging of thin cucumber slices followed, in an effort to
examine the validity of the method in higher scattering samples
[Figs. 4(c) and 4(d)]. The average results, when using the reflec-
tor below the sample to measure the path lengths,9 are also
shown in Table 1. The estimated n, compared to the reference
value, exhibited a mean error of ∼0.7% (varying from 0.5% to
2%). The index of refraction was also determined using the
cross-correlation method (Fig. 5). The results are also shown
in Table 1. When compared to the reference value, the error
was ∼1.1% (varying from 0.1% to 3%). The precision of the
measurements of angle and distance were also evaluated from
the OCT images of glass. When measuring the angle, from vari-
ous locations within the same image, the values did not vary
by more than a standard deviation of 0.7 deg. In addition, the
measured path length, within the same image, varied by <8 μm
standard deviation. The accuracy of the measurements was
evaluated by comparing to the expected path length, i.e.,

L ¼ nd∕ cosfa sin½sinðθ1Þn �g, and was found not to vary by more
than 9 μm.

Finally, to validate the applicability of the proposed tech-
nique to tissue samples, freshly excised rabbit trachea was
imaged. The results are shown in Fig. 6 and Table 1. The pro-
posed methods (measuring the path-length change with or
without reflector).9

The variation in the error, reaching in some cases 3%, is
explained by but also exemplifies the most serious limitation of
the proposed technique, i.e., image misalignment. Misalignment
by as little as �10 μm between the two images could lead to
up to 5% error, as measured experimentally. This limitation
should be taken into account and alignment should be carefully
monitored especially when measuring the index of nonuniform
samples. Fortunately, angle-resolved OCT systems, which are
specifically designed to image the same sample area under
different incident angles, can provide angular and spatial preci-
sions limited only by the precision of the galvanometric scan-
ners. The performance of such systems has been validated for
speckle reduction and results indicate that there is no resolution
degradation implying negligible spatial shifts.18

4 Conclusions
In this paper, we propose a measurement technique that could be
deployed for in vivo estimation of n. This technique uses two
OCT images obtained at different incidence angles and estimates
n by measuring the path-length changes and the incidence
angles. In tissues with no distinct reflectors, the path-length
change can be estimated by first registering and aligning the two
images, with a rigid affine transformation, and subsequently
using the cross-correlation of corresponding A-scans from each
image. Experimental verification produced values of n with a
mean error of ∼1% compared to the expected values. The main
limitation of this technique is the effect of misalignment of the
images on the results, which can result in up to 5% error for
10 μm misalignment. However, the use of an angular-resolved
system should provide the precision required for the application
of the proposed technique. These initial results are promising and
provide evidence that this method should be further investigated

and validated on human tissues so that, in the future, it could be
developed into a clinically useful diagnostic tool.
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