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Abstract. Polymeric endovascular implants are the next step in minimally invasive vascular interventions. As an
alternative to traditional metallic drug-eluting stents, these often-erodible scaffolds present opportunities and
challenges for patients and clinicians. Theoretically, as they resorb and are absorbed over time, they obviate
the long-term complications of permanent implants, but in the short-term visualization and therefore positioning
is problematic. Polymeric scaffolds can only be fully imaged using optical coherence tomography (OCT) imaging
—they are relatively invisible via angiography—and segmentation of polymeric struts in OCT images is per-
formed manually, a laborious and intractable procedure for large datasets. Traditional lumen detection methods
using implant struts as boundary limits fail in images with polymeric implants. Therefore, it is necessary to
develop an automated method to detect polymeric struts and luminal borders in OCT images; we present
such a fully automated algorithm. Accuracy was validated using expert annotations on 1140 OCT images
with a positive predictive value of 0.93 for strut detection and an R2 correlation coefficient of 0.94 between
detected and expert-annotated lumen areas. The proposed algorithm allows for rapid, accurate, and automated
detection of polymeric struts and the luminal border in OCT images. © 2018 Society of Photo-Optical Instrumentation Engineers

(SPIE) [DOI: 10.1117/1.JBO.23.3.036010]
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1 Introduction
Coronary artery disease (CAD) is a major contributor to death in
developed countries and accounts for almost one third of all
deaths in individuals over 35 years.1 CAD is characterized
by the development of atherosclerosis and occlusive plaque bur-
den in the coronary artery.2,3 Arterial stenoses impair distal flow
and induce cardiac destruction with myocardial infarction.4

Minimally invasive procedures, such as metallic stent and poly-
meric scaffold angioplasty, address specific lesions5 without
resorting to open-heart surgery, minimizing procedural risk and
speeding recovery times.5,6 Endovascular implants are inserted
with a catheter through one of the major arteries like the femoral
artery and are usually balloon-expanded to hold open a stenosed
region, enabling previously constricted blood to pass freely.7

While metallic stents remain the most widely used coronary
implants, they induce sustained injuries remodeling the coro-
nary artery after waves of endothelial damage, inflammation,
tissue proliferation, and disturbed vasomotion.8,9 Erodible
polymeric implants10 allow restoration of normal endothelial
function and biomechanical characteristics that may never be
recovered with the permanent metallic stents.11–13 Polymeric
implants are currently in the early stages of development; con-
sequently, there is a scarcity of computational methods to quan-
tify their effects on patient cardiovascular function. In particular,

bioresorbable vascular scaffolds (BVS) are a commonly used
polymeric endovascular implant, and, in spite of their benefits,
concern has been raised due to the excess thrombosis and myo-
cardial infarctions associated with BVS.14,15 These adverse com-
plications of BVS are a result of the large strut size, which alters
the pulsatile arterial flow patterns and leads to arterial thrombo-
sis and myocardial infarctions. Safe use of this technology
requires a greater understanding of the basic mechanics of
erosion10 and interaction with the blood vessel wall.13 To
achieve this, we need to study the biomechanical effects of pol-
ymeric scaffolds on the coronary artery, and this requires accu-
rate three-dimensional (3-D) representation of the struts and
luminal border. The first step in such a representation is the
development of a robust and fully automated polymeric strut
and lumen detection methodology from two-dimensional (2-
D) intracoronary images.

Optical coherence tomography (OCT) is an intracoronary
light-based imaging modality, whose finer resolution of 1 to
15 μm16,17 allows for detailed evaluation of the luminal border,
strut outlines, vessel wall morphology, and plaque characteriza-
tion.17 Given these benefits, OCT is becoming the primary
clinical imaging modality used to detect the lumen border and
scaffold struts and to estimate plaque composition and vol-
ume18,19 in the coronary artery. In intracoronary OCT images, pol-
ymeric struts and, in particular, BVS struts appear as rectangular
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polygonal structures with well-defined edges and a black core
while only the adluminal side of metallic stents can be seen as
bright fringes with a dark shadow behind them.20 Presently,
numerous methods exist to detect metallic stents,21,22 which
cannot be applied to polymeric scaffold struts given their physi-
cal and material differences.23,24 Additionally, in images with
apposed polymeric struts, traditional lumen detection methods25

fail to accurately detect the luminal border.
Despite the emerging popularity of the polymeric scaffold

technology, to our knowledge, there is only one semiautomated
method to detect BVS struts in OCT images.16 This method
requires a different algorithm to detect struts above the arterial
wall (baseline: right after implantation of the polymeric scaf-
fold) and those embedded inside the tissue (follow-up: few
months postimplantation of the polymeric scaffold) and uses
percentile-based thresholding for each patient. The user speci-
fies whether the intravascular OCT pullback is baseline or fol-
low-up, making it difficult to detect polymeric struts in patients
who have a combination of embedded and apposed struts.
Furthermore, a percentile-based thresholding technique is not
robust over a large patient population as there is no automated
way to find an optimal percentile value for all OCT pullbacks.

To address these limitations, we propose a new methodology
that utilizes K-means clustering to automatically segment OCT

images. This approach can be adapted to detect polymeric struts
with a polygonal definition and well-defined edges. We
apply this methodology to detect BVS struts and the luminal
border in images with the polymeric implant. The methodology
robustly removes imaging artifacts (catheter, protective sheath,
and guide wire), thresholds the image, and detects the BVS strut
core and true luminal border independent of strut position. The
innovative aspects of the proposed methodology include auto-
matic segmentation of OCT images to detect polymeric strut
outlines; detection of well-apposed, malapposed, and embedded
struts without the need for predefined threshold values; and
accurate detection of the luminal border in scaffolded segments.

2 Materials and Methods
We use the following steps (Fig. 1): sequential raw OCT image
acquisition from patient OCT pullback, preprocessing to
denoise the image and remove the guide wire, imaging catheter,
and protective sheath, automated segmentation using the
K-means clustering algorithm, detection of the polygonal
shaped polymeric strut core, and detection of the luminal border
by removing the detected polymeric struts.

2.1 Image Acquisition and Preprocessing

The raw OCT image consists of a sequence of A-lines (columns)
in an image matrix, whose values represent the optical energy as
a function of time. This image is stored in polar coordinates,
where each pixel has intensity Iðr; θÞ, such that r is the
range parameter and θ is the angle of acquisition, which is con-
verted to Cartesian coordinates to visualize the arterial features,
Iðr; θÞ → Iðx; yÞ, where x ¼ r cosðθÞ and y ¼ r sinðθÞ. The
raw OCT image has dimensions 504 × 952, giving a total of
479,808 pixels. The image uses a linear scale, and pixel intensity
values are normalized between a [0, 1] scale. A bilateral filter
and edge detection method are applied to reduce background
noise and remove artifacts, respectively.

2.1.1 Bilateral filtering

A bilateral filter is a nonlinear filter that reduces overall noise in
the image while preserving the sharpness of edges.26 The inten-
sity value of each pixel in the image matrix is replaced by a
weighted average of the neighboring pixels in a predefined
neighborhood kernel, N. This weight is nonlinear and is
sampled from some specified distribution functions.26,27 Unlike
the Gaussian filter, whose weight is purely dependent on
Euclidean distances between pixels,28 the bilateral filter uses a
weight that is a combination of both Euclidean distances and
intensity differences between neighboring pixels.27 Integrating
both intensity and distance gradients in the smoothing function
not only reduces the overall noise in the image but also enhances
edge detection. Formally, the bilateral filter is defined as
follows:

EQ-TARGET;temp:intralink-;e001;326;174Ifðx̂Þ ¼ 1

WP

X
x̂i∈N

Iðx̂iÞfr½jjIðx̂iÞ − Iðx̂Þjj�gsðjjx̂i − x̂jjÞ; (1)

where If is the filtered image, I is the raw input image, x̂ is the
position of the central pixel, x̂i is each pixel in the defined neigh-
borhood N, fr is a Gaussian range filter (which uses intensity
gradients), gs is a Gaussian spatial filter (which uses the
Euclidean distances between pixels), and the normalization term
WP is defined as follows:

Fig. 1 Overview of the image processing pipeline applied to detect
the BVS struts and luminal border in intracoronary OCT images.
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EQ-TARGET;temp:intralink-;e002;63;752WP ¼
X
x̂i∈N

fr½jjIðx̂iÞ − Iðx̂Þjj�gsðjjx̂i − x̂jjÞ (2)

to ensure that the total image energy is preserved.26,27 In this
methodology, we used a 3 × 3 kernel window with the smooth-
ing parameter σs ¼ 1.0 for both Gaussian kernel functions.
Several other kernel dimensions and smoothing parameters were
used, but these gave the best results.

2.1.2 Catheter artifact detection

To locate the start of the imaging catheter in the OCT image, we
find the first pixel in the first and last A-line whose intensity is
above 0.6 intensity units. We tried other intensity thresholds;
however, in all of the 1140 images, the catheter intensity was
∼0.6 intensity normalized units.

2.1.3 Protective sheath detection

Some existing methods29 assume that the protective sheath is a
straight line located at a fixed distance (0.45 mm) below the start
of the imaging catheter, while other methods use edge detection
to find the exact curvature16 of the protective sheath. The
straight-line approximation holds in most cases but is not robust
and leads to problems when the sheath outline is close to or
touching the polymeric struts or lumen border. In these cases,
this oversimplification of the sheath geometry leads to the
deletion of parts of the polymeric struts or lumen border.
Therefore, to accurately delete the protective sheath, we use an
edge detection method by walking along the gradient of the
sheath outline.16 To do so, we convert the image matrix to an
undirected weighted graph and use Dijkstra’s algorithm30 to
find the minimum cost path.

To construct the cost function to transition between pixels,
we use a four-connectivity model16 in a 3 × 3 neighborhood.
Using a 3 × 3 kernel window is justified because the sheath
geometry is sufficiently simple and uniform. To determine the
weights in our cost function, we calculate the inverse of the
directional gradients as follows:

EQ-TARGET;temp:intralink-;e003;63;327Wx ¼
1

Gx
and Wy ¼

1

Gy
; (3)

where Wx and Wy are the weights in the horizontal and vertical
directions, respectively, and Gx and Gy are the intensity gra-
dients in the x and y directions, respectively. Using the inverse
gradients to specify the weights implies that the strongest edges
in the image have the smallest weights in the graph, and thus
walking along the gradient in the image is equivalent to taking
the shortest cost path in the graph. For a pixel starting at ði; jÞ,
we assign a weight of Wij

x for all nodes in the horizontal direc-
tion and of Wij

y for all nodes in the vertical direction. We con-
struct the graph such that each structure in the graph is defined
by the start node, end node, and associated node transition cost
[Eq. (3)]. Using this graph, we apply Dijkstra’s algorithm to find
the minimum cost path between the start and end nodes.30

2.1.4 Guide wire removal

The region below the guide wires always presents as a black
shadow (Fig. 1). The length of the guide wire (L) is approxi-
mately 30� 2 pixels and depends on its position relative to
that of the catheter. In our algorithm, we use the average length

of L ¼ 30. To remove the guide wire, we found the A-lines with
the smallest sum intensity and removed this region by

1. scanning each column and calculating the total inten-
sity of all pixels in that column as IT , where IT ¼
fI1; I2; : : : ; Ing and Ii is the sum intensity for A-
line i,

2. iterating through IT and finding a subset of L consecu-
tive A-lines with a minimum combined sum using the
following:

a. From IT , we created a vector S of length n − L,
such that the i’th element of S, Si is given byPiþ70

j¼i Ij.
b. The starting column of the guide wire corresponds

to the index i such that minðSÞ ¼ Si.
c. The last column of the guide wire is then iþ L.

3. Deleting the entire region between the i’th and
iþ L’th A-lines.

In cases where the guide wire is smaller than 30 pixels, we
delete a small portion of the lumen, and, in cases where the
length is greater than 30 pixels, some portion of the guide wire
remains unremoved. In either case, the error is only 2 pixels for a
500 × 952 image and does not affect our segmentation result.

2.2 Automated Segmentation

To segment the image automatically, we use a K-means cluster-
ing algorithm with k ¼ 3 clusters;31 [k ¼ 2, 3, and 4 cluster val-
ues were tested, but k ¼ 3 produced the highest positive
predictive value (PPV)]. The K-means algorithm is an unsuper-
vised machine learning algorithm that takes as an input a set of
N observations fx1; x2; : : : ; xNg and classifies them into k clus-
ters S ¼ fS1; S2; : : : ; Skg to minimize the sum of squares
residual error within each cluster. We can formally define this
clustering problem as the minimization of an objective function:

EQ-TARGET;temp:intralink-;e004;326;331arg min
S

Xk
i¼1

X
x∈Si

jjx − μijj2; (4)

where μi is the mean intensity of all the points in cluster Si.
32 We

apply this algorithm to each OCT image in the pullback for k ¼
3 clusters and produce a masked image (Figs. 1, 3, and 4), where
each pixel in the image is classified to one of three clusters. The
cluster with the minimum mean intensity is the noise while the
remaining clusters contain features of interest, such as polymeric
strut and luminal border outlines. To convert this masked image
into a binary image, we calculated the mean intensity value of
each of the three clusters, and, for all pixels in the minimum
mean intensity cluster, we set their intensity value to 0 and all
remaining pixels to 1.

2.3 BVS Strut Detection

We use the thresholded image [Fig. 2(d)] to identify the polygo-
nal shaped polymeric strut cores. For each A-line, to classify
two points as the start and end of the polymeric strut core, we
(1) define the start of the strut core as the pixel, where the inten-
sity drops from 1 to 0 and the end when the intensity jumps from
0 to 1 and (2) only keep the pair of start and end points if the
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distance between them is within a prespecified range (based on
typical BVS physical specifications, but this step can be adapted
for polymeric struts with other dimensions).

Once we identified the start and end points of the strut core
within each A-line, we set all pixels between these points to 1
intensity units and all other pixels to 0. This produces an image
with candidate strut cores [Fig. 2(e)]. To account for the missed
strut cores from some A-lines, we use a morphological disk with
a radius of 1 to dilate the image. Finally, we removed false pos-
itives (FPs) by including only candidates whose aspect ratio is
less than 5 and area is between 20 and 40 pixels2. Crucially,
BVS struts commonly fracture and will resorb10 over time and,
consequently, do not have a fixed shape or size;33 to account
for this variability, we accept candidates within a prespecified
range. We then use a perimeter function to find the outline of
the strut cores [Fig. 2(f)] and then convert the image to Cartesian
coordinates [Fig. 2(g)].

2.4 Lumen Border Detection

Current methods25 used to detect the lumen border fail in
the presence of well-apposed polymeric struts because the struts
obscure the true lumen border. Consequently, to detect an
approximation of the lumen border in images with well apposed
polygonal shaped polymeric struts, we process the image by
(Fig. 3) deleting the entire region behind each strut, applying
the k-means algorithm with k ¼ 2 clusters, converting the image
into a binary image using the following rule: setting the cluster
with the lowest mean intensity to 0 and the other cluster to 1
intensity units, scanning each A-line and marking the first
index, which is 1 intensity unit as the start of the lumen outline,

and connecting the points using a linear interpolation in polar
coordinates, yielding a curve in Cartesian coordinates.

3 Dataset
For the validation of the proposed plaque characterization
method, we used anonymized OCT examinations from 15
patients (Hospital Universitario Marqués de Valdecilla, Santander,
Spain). These patients ranged from a day postprocedure to
almost 9 months postprocedure. The purpose of using this longi-
tudinal range was to include OCT images with a combination of
malapposed, well-apposed, and embedded struts. The images
were acquired using frequency domain (FD-OCT) OCT equip-
ment (LightLab Imaging, Inc.) with a 6 Fr FD-OCT catheter (C7
Dragonfly). Automated contrast injection was performed to
optimize the best image quality in all pullbacks. The endovas-
cular polymeric implant used for this study is “The Absorb
Vascular Scaffold BVS by Abbott Vascular, Santa Clara,
California, USA,” a 150 μm think bioresorbable poly-L-lactic
acid scaffold with a 7 μm thick bioresorbable poly (D, L-lactide)
coating, which elutes everolimus. The scaffold used has a diam-
eter between 2.5 and 3.5 mm and is 12 to 28 mm in length. An
expert manually marked the BVS strut outer border and the
lumen border outlines on 1140 images, which were used as
the gold standard for the present study. These images were
marked to count the number of BVS struts visible. Two medical
experts annotated the same images, and there was disagreement
for only five images, which were discarded from the study.
Given the lack of interobserver variability, we used annotations
from one of the experts who marked the outer border points of
each strut to annotate its position. Struts with multiple bright
spots inside the strut were still considered as one strut. Then,
we connected the marked points and fit them to a circle and
ellipse whose area was the gold standard device coverage area
used in the validation. Approximately 5% of all frames were
removed from the validation study for the following reasons:
experts’ disagreement (five frames), excess blood inside the

Fig. 2 Automated detection applied to BVS struts: (a) raw OCT
image, (b) OCT image cleared of artifacts using the procedure in
Sec. 2.2, (c) K -means segmentation masked image (with k ¼ 3 clus-
ters), (d) binary thresholded image, (e) BVS struts segmented as
blocks, (f) BVS strut outline, and (g) BVS strut boundaries represented
in Cartesian coordinates in red.

Fig. 3 Automated detection of the lumen border applied to an image
with BVS struts: (a) OCT image cleared of imaging artifacts, (b) image
cleared of the detected struts, (c) K -means segmentation masked
image (with k ¼ 2 clusters), (d) binary thresholded image,
(e) lumen border outline detected using linear interpolation, and
(f) lumen border translated into Cartesian coordinates in red.
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lumen and around struts due to improper flushing, presence of
bifurcations obscuring the luminal outline, and presence of
multiple scaffolds on top of one another. The data were obtained
under ethical procedures and screened for patient consent.

4 Results
To validate our proposed methodology, we used common val-
idation metrics (Table 1) for the strut count and performed a
Bayesian regression and Bland–Altman analysis for the strut
count and area and the lumen area.

4.1 Bayesian Parameter Estimation

In this work, we determine the optimal regression parameters
ðm; cÞ using Bayesian methods. We calculate the probability
distribution of each regression parameter given the observed
results; then using Bayes theorem, we can denote

EQ-TARGET;temp:intralink-;e005;63;402Pðm; c; σjDÞ ¼ PðDjm; c; σÞ · Pðm; c; σÞ
PðDÞ ; (5)

where m and c are the regression gradient and y-intercept,
respectively, σ is the standard deviation for the Gaussian like-
lihood, D is the data and consists of the area of strut count
detected by the methodology and annotated by the expert,
PðDjm; c; σÞ is the likelihood of getting the observed data given
the parameters, Pðm; c; σÞ is the prior belief on the values of the
parameters, and PðDÞ is the normalization constant. We expect
the detected area or strut count for the i’th image to be linearly
proportional to that found by annotations, namely Di ¼ Aimþ c
for some parameters m and c. We assume a Gaussian likelihood
with some variance σ2; then, our likelihood function is given by

EQ-TARGET;temp:intralink-;e006;63;237PðDjm; c; σÞ ¼ 1

ð2πσ2Þn2
Yn
i¼1

exp

�
−

1

2σ2
ðDi − AiÞ2

�
; (6)

where n is the number of images, Di is the strut count or area
detected by the methodology, and Ai is the strut count or area
annotated by the expert. We assume a uniform prior distribution
for the parameters m and c and a Jeffrey’s prior for the scale
parameter σ, which yields the prior probability to be

EQ-TARGET;temp:intralink-;e007;63;135Pðm; c; σÞ ∝ 1

σ
: (7)

Combining the above expressions, we use Markov Chain
Monte Carlo (MCMC) to sample from the posterior distribution
Pðm; c; σjDÞ to find the optimal parameter values.

The purpose of this Bayesian analysis is to quantify the level
of uncertainty in the regression parameters to holistically evalu-
ate the accuracy of the proposed methodology. The regression
y-intercept corresponds to the systematic error in the proposed
methodology and the gradient corresponds to the ratio of the
detected strut count or area to the gold standard. We expect
the y-intercept and gradient to be 0 and 1, respectively, for a
perfect detection. Using the posterior distribution allows quan-
tification of how much these parameters deviate from this null
hypothesis.

4.2 BVS Strut Count

To validate the proposed BVS detection methodology, we used
common validation metrics (Table 1). We denote the true pos-
itives (TP) as the struts detected by both the methodology and
expert, FPs as those struts detected by the methodology but not
by the expert, and false negatives (FNs) as the struts detected by
the expert but missed by our methodology. Using these defini-
tions, we calculated the validation metrics in Table 1. The met-
rics in Table 1 are defined as follows: the PPV is defined as TP/
(TP + FP), the true positive rate (TPR) is defined as TP/(TP +
FN), the false discovery rate (FDR) is defined as 1 – PPV, the
false negative rate (FNR) is defined as 1 – TPR, and the F1 score
is defined as 2TP / (2TP + FP + FN).

Additionally, we performed a Bayesian regression
[Figs. 4(a)–4(c)] and Bland–Altman analysis [Fig. 4(d)] for the
strut count. The Bland–Altman analysis revealed a mean of
−0.16, which shows no significant bias. From the regression
posterior distributions [Figs. 4(b) and 4(c)], the systematic error
is a sharply peaked Gaussian at 0.5, which is a negligible sys-
tematic error and the gradient is a sharply peaked Gaussian at
0.91, depicting that up to 91% of the struts are detected by our
methodology compared with the gold standard. We also calcu-
lated the validation metrics and error in strut detection for each
patient as in Fig. 5. We see that all patients except patient 9 have
a narrow distribution centered at approximately 0 with a small
tail [Fig. 5(a)], indicating a low detection error.

4.3 BVS Strut Area Measure

Additionally, we also calculated the area of the circle and ellipse
that best fit the outer borders of the struts. To find the best-fit
circle, we used Pratt’s method on images with at least three
detected struts spaced sufficiently apart to generate an arc to
approximate a circle or five points to approximate an ellipse. To
find the best-fit ellipse, we used a nonlinear least-squares cri-
terion using the conic representation of an ellipse given by

EQ-TARGET;temp:intralink-;e008;326;231a1x2 þ a2y2 þ a3xþ a4xyþ a5y ¼ 0: (8)

The regression analysis [Fig. 6(a)] revealed an R2 value of
0.93. The Bland–Altman analysis [Fig. 6(b)] revealed a mean
of 0.14 mm2 for the scaffold area, which shows no significant
bias. From the regression posterior distributions [Figs. 6(c) and
6(d)], the systematic error is Gaussian centered at 0.15 mm2 and
the relative accuracy is ∼95%.

Quantifying the ratio of the annotated strut area to the
detected strut area for each patient, the violin plot captures the
distribution for each patient and shows that the majority of
patients have a mean centered close to 1 with a small tail
[Fig. 7(a)]. Analyzing the distribution of SAA − SAM revealed
a sharply peaked Gaussian centered at 0.14 mm2, indicating

Table 1 Summary of validation metrics for BVS strut detection.

Validation metric Value across 1140 images

Pearson correlation coefficient 0.88

PPV 0.93

TPR 0.90

FDR 0.07

FNR 0.10

F1 score 0.91
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Fig. 4 Summary of overall results for BVS strut detection using binary validation. (a) Regression plot of
the number of struts detected by the methodology versus those identified by the expert, where the color
density of each point corresponds to the number of points accumulated at that coordinate. (b) Posterior
distribution of the y -intercept from the regression analysis, (c) posterior distribution of the gradient of the
regression analysis, (d) Bland–Altman analysis with the mean (solid black line) and the 95% confidence
interval (dashed red lines), (e) histogram with a Gaussian best fit for the difference in the number of struts
detected by methodology and those detected by the expert annotations, with the mean (dashed black
line) and the 95% confidence interval (dashed red lines), and (f) histogram with a Gaussian fit for the
number of struts annotated by experts (red) and those detected by our methodology (blue); the shaded
green region is the difference between the two (NSA: number of struts annotated by experts, NSM: num-
ber of struts detected by our methodology). The posterior probability in (b) and (c) is not normalized and is
dimensionless. The probability in (f) is normalized and is between 0 and 1.

Fig. 5 Summary of error and validation metrics for BVS strut detection using binary validation for each
patient. (a) A violin-plot outlining the error in strut detection for each patient; the white dot indicates the
mean, the black tube surrounding this dot represents the 95% confidence interval, and the shape of each
violin shows the distribution, (b) FPR, (c) FNR for each patient, and (d) summary of validation metrics
(PPV, Pearson correlation coefficient, TPR, FDR, FNR, and the F1 score) from Table 1 for all patients
(NSA: number of struts annotated by experts, NSM: number of struts detected by our methodology).

Journal of Biomedical Optics 036010-6 March 2018 • Vol. 23(3)

Amrute et al.: Polymeric endovascular strut and lumen detection algorithm. . .



a reliable detection result [Fig. 7(b)]. We define the detection
area error for each patient as follows:

EQ-TARGET;temp:intralink-;e009;63;379

jAA − AMj
AA

× 100%; (9)

where AA is the annotated lumen/BVS strut area and AM is the
detected lumen/BVS strut area. We calculated the detection error
for each patient using Eq. (9) to quantify the normalized error
with respect to the true area [Fig. 7(c)] and found that most
patients had a detection error of less than 5% on average.
Furthermore, we found that the ratio of the annotated to detected
strut area is a sharply peaked curve around 1 for almost all
patients [Fig. 7(a)], indicating a low area error in strut detection.

4.4 Lumen Detection

To validate the lumen detection component of our methodology,
we compared the area of the detected versus annotated lumen
outline. The regression analysis [Fig. 8(a)] revealed a R2 of
0.94 and a mean of 0.09 mm2 for the lumen area, indicating
no significant bias. Because the lumen detection relies on pre-
vious processing stages, this bias can be attested to errors propa-
gated from previous steps. This limitation is further discussed in
Sec. 4.6. From the regression posterior distributions [Figs. 8(c)
and 8(d)], the systematic error is a sharply peaked Gaussian
around 0.2 mm2 and the relative accuracy is ∼95%.

The ratio of the annotated to the detected lumen area for each
patient shows that the majority of patients have a mean centered
at ∼1. with a small tail [Fig. 9(a)]. Analyzing the distribution of
LAA − LAM revealed a sharply peaked Gaussian centered at

0.09 mm2. We also calculated the lumen area detection error for
each patient [Eq. (9)] to quantify the normalized error with
respect to the true area and found that most patients had a detec-
tion error of less than 10% on average [Fig. 9(c)].

4.5 Application Examples and Comparison with the
Literature

We applied our algorithm to 1140 images on an i7 8G RAM
machine; detection time scales linearly with the number of
OCT images and took 3 s per OCT image. This amounts to
∼5 min per patient (with 100 frames). In Figs. 10(a)–10(c), we
show our algorithm applied to images with embedded, malap-
posed, and well-apposed struts.

Existing strut detection methods cannot be used to detect
struts in patients with a combination of embedded and apposed
struts; therefore, we cannot quantitatively compare our strut
detection algorithm to literature methods. To be able to have a
direct comparison of the lumen detection part of our method
with existing methods, we implemented and applied on our data-
set the most recent and robust method presented in the litera-
ture.25 We performed a regression analysis [Fig. 11(a)] and
found that our algorithm has an R2 ¼ 0.94, while the literature
method has an R2 ¼ 0.86. From the Bland–Altman analysis
[Fig. 11(b)], we found that our algorithm shows no significant
bias (0.09 mm2) while the literature algorithm had a significant
bias (0.44 mm2). The Bland–Altman analysis also revealed that
the literature algorithm has a significantly larger confidence
interval band indicating low detection reliability. We also com-
pared the lumen area detection error per patient [Fig. 11(c)] and

Fig. 6 Summary of BVS strut area validation. (a) Regression plot of the average area of the best fit ellipse
and circle for the BVS struts outer border as detected by our methodology versus that annotated by an
expert, (b) Bland–Altman analysis with the mean (solid black line) and the 95% confidence interval
(dashed red lines), (c) posterior distribution of the y -intercept from the regression analysis, and (d) pos-
terior distribution of the gradient of the regression analysis (SAA: the average area of the best fit circle and
ellipse through the annotated strut outer borders, SAM: the average area of the best fit circle and ellipse
through the detected strut outer borders). The posterior probability in (c) and (d) is dimensionless and is
not normalized.
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Fig. 7 Summary of BVS strut area detection error. (a) A violin-plot outlining the error in strut area detec-
tion for each patient; the white dot indicates the mean, the black tube surrounding this dot represents the
95% confidence interval, and the shape of each violin shows the distribution, (b) histogram with a
Gaussian fit for the difference in scaffold detection area between the annotations and methodology,
and (c) BVS strut area detection error Eq. (9) for each patient (SAA: the average area of the best fit
circle and ellipse through the annotated strut outer borders, SAM: the average area of the best fit circle
and ellipse through the detected strut outer borders).

Fig. 8 Summary of lumen detected area validation. (a) Regression plot of the lumen area for the meth-
odology versus annotations, (b) Bland–Altman analysis with the mean (solid black line) and the 95%
confidence interval (dashed red lines), (c) posterior distribution of the y -intercept from the regression
analysis, and (d) posterior distribution of the gradient of the regression analysis (LAA: the area of the
lumen annotated by experts, SAM: the area of the lumen detected by the methodology). The posterior
probability in (c) and (d) is dimensionless and is not normalized.
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found that the literature method produces significantly larger
errors in most cases.

To study the applicability of the proposed methods when
used by 3-D reconstruction algorithms, we analyzed the fraction
of all frames that cannot be used by these algorithms. We define
the frame failure rate (FFR) as the fraction of all segmented
frames that cannot be used for further analysis (Fig. 12). In
Fig. 12, the x-axis is the BVS strut/lumen area error and the
corresponding fraction of all frames that cannot be used for
3-D reconstruction. We fit the curves to a decaying exponential
and found a decay rate of 0.22 and 0.15 for the strut and lumen
detection FFR, respectively. Therefore, the FFR falls exponen-
tially, indicating that most frames have a low detection error.
The FFR drops more steeply for the strut detection [Fig. 12(b)]
as compared with that for the lumen detection [Fig. 12(d)]. This
difference indicates that there is a larger error in the lumen
detection procedure, which can be attested to postprocessing
error accumulation. The lumen detection algorithm uses the
input from previous steps in the image processing pipeline (arti-
fact removal and strut detection); consequently, any errors
incurred in these earlier steps will be accumulated in the lumen
detection method.34 Finally, we repeated the FFR analysis for
the literature lumen detection method [Fig. 11(d)] and found
that the FFR drops less slowly for the literature method25 as
compared with our proposed algorithm. Together, these metrics
show that our algorithm provides a greater and more reliable
lumen detection accuracy, and our FFR analysis, validation
plots, and representative examples together show the applicabil-
ity of our proposed method. Given the high PPV of the strut

(0.93) and lumen detection (0.94) methodology, our proposed
algorithm in conjunction with manual calibration holds promise
of producing realistic 3-D geometric models of the scaffolded
coronary artery.35

We also applied our algorithm to images with excess noise
and blood artifacts in the lumen and found accurate detection
results [Figs. 13(a) and 13(b)]. In some images, the orientation
of the struts precludes light from interacting with the strut edge,
and, as a result, the struts are seen as incomplete due to this
mismatch in the refraction index—we call these struts incom-
plete. We tested our algorithm on images with incomplete struts
and found that it accurately detects them [Fig. 13(c)].

4.6 Limitations

Our algorithm produces FPs when there is a shadow behind the
strut and the back face of the strut cannot be seen properly and in
images where there is a bright fringe inside the strut. In both
cases, single struts are identified as two distinct struts as the
algorithm interprets the fringe as dividing the strut. The algo-
rithm produces FNs in the presence of bright edges, dark shad-
ows, or with struts that are resorbed or fractured. A K-means
clustering algorithm differentiates between strut images with
bright or dark edges, and, through judicious management of
cluster number, we can work to optimize PPVof the algorithm.
Images with the vascular scaffold and a metallic stent implant in
the same frame can often induce black shadows, especially
behind the metallic struts and at the edge of the BVS. Conse-
quently, BVS struts, which are close to one another, may appear
as a single strut, but this does not change the lumen detection.

Fig. 9 Summary of lumen area detection error. (a) A violin-plot outlining the error in lumen area detection
for each patient; the white dot indicates the mean, the black tube surrounding this dot represents the 95%
confidence interval, and the shape of each violin shows the distribution, (b) histogram with a Gaussian fit
for the difference in lumen detection area between the annotations and methodology, and (c) lumen area
detection error [Eq. (9)] for each patient (LAA: area of the annotated lumen, LAM: the area of the lumen
detected by the methodology).
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Finally, our algorithm is sensitive to cases in which the imaging
catheter pushes against the lumen border. The error in the
detected lumen is a result of errors propagated from preprocess-
ing steps.34 In these images, any error in the detection of the
protective sheath propagates as an error in the lumen detection.

5 Discussion
We present an automated method to detect endovascular poly-
meric struts and the lumen border in intracoronary OCT images.
Our proposed method accurately removes imaging artifacts via
edge detection,16 utilizes a K-means clustering algorithm to
automatically segment the image, identifies the polygonal-
shaped polymeric strut outlines, and accurately locates the
true luminal border. We applied our methodology to BVS struts,

tested our method on 1140 images, and found a PPVof 0.93 for
strut detection. Additionally, we found an R2 correlation of 0.94
between the detected and annotated lumen area. We also per-
formed a Bayesian analysis using MCMC on the regression
parameters to quantify the level of uncertainty in the validation.
This yielded sharply peaked Gaussian posteriors, without long-
tails, which indicates that the parameter values are well defined
and can be reliably used to assess the efficacy of presented meth-
odology. Given the low validation errors, our methodology can
be adapted to future endovascular polymeric implants, where the
struts have a polygonal core and well-defined edges.

Existing polymeric strut detection methods use different
thresholds to detect polymeric struts above and below the
arterial wall,16 which leads to problems in follow-up patients

Fig. 10 Representative cases of our algorithm applied to images. (a) Example of algorithm applied to
embedded struts, (b) example of algorithm applied to a combination of embedded and well-apposed
struts, and (c) algorithm applied to images with embedded and malapposed struts. The first column
is the raw OCT image, the second column is the detected struts, and the third column is the detected
lumen boundary. (d) Example of lumen detection method using the proposed and traditional methods.25

The first image in (d) is a raw OCT image, the second it the lumen detected using a literature method, and
the third is the lumen detected using our method.
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who have a combination of struts above and below the arterial
wall. Furthermore, existing lumen detection algorithms25 fail to
accurately detect the true luminal outline in images with the
apposed vascular scaffolds [Fig. 10(d)]. To our knowledge, there

is no fully automated method to accurately detect the lumen in
scaffolded OCT images. We propose an automated procedure to
detect both BVS struts independent of strut position and the
lumen border in images with an apposed vascular scaffold. Our

Fig. 11 Validation plots to compare proposed lumen detection algorithm to the literature lumen detection
algorithm.25 (a) Regression plot for the lumen area detected by the methodology (literature25 and pro-
posed lumen detection algorithm) versus the lumen area annotated by expert observations, (b) Bland–
Altman analysis for literature25 and proposed algorithm with the solid line indicating the mean and the
dashed lines indicating the 95% confidence interval, (c) lumen area detection error [Eq. (9)] for each
patient for literature25 and proposed algorithm, and (d) the average FFR across all images versus
the lumen detection area error for literature25 and proposed algorithm (LAA: area of the annotated
lumen, LAM: the area of the lumen detected by the methodology). The FFR is dimensionless.

Fig. 12 Summary of the FFR for the polymeric strut and lumen detection methodology. (a) The FFR
versus the BVS strut detection area error for each patient, (b) the average FFR across all images versus
the BVS strut detection area error, (c) the FFR versus the lumen detection area error for each patient, and
(d) the average FFR across all images versus the lumen detection area error. In panels (a) and (c), the
different colors represent each of the 13 patients (SA: average area of the best fit circle and ellipse
through detected BVS strut outer borders, LA: lumen area). The FFR is dimensionless.
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approach is crucial because analysis of acute vascular response
to polymeric implants requires a combination of both struts
above and below the arterial wall.36,37 Our procedure scales
linearly in the number of OCT images and requires less than
3 s per OCT image on an i7 8 GB RAMmachine, which requires
∼5 min (for 100 scaffolded frames) per patient and eliminates the
need for clinicians to laboriously segment the struts by hand.

The spatial location of the polymeric struts is of interest to
clinicians because it can be used to calculate the diameter of the
implants and position of the struts with respect to that of the
lumen together these metrics can be used to quantify the overall
coverage of the device and procedural success. This spatial
analysis can provide relevant quantitative metrics to identify
specific struts with higher risk of thrombosis allowing for timely
clinical interventions.38 Registering spatial positioning of struts
is the cornerstone to studying how polymeric struts evolve over
time. Such temporal tracking is instrumental to assessing the
efficacy of the emerging polymeric implant technology as it can
be combined with other techniques, such as plaque characteriza-
tion29 to study hemodynamic evolution over time.39

The proposed polymeric strut and lumen detection method-
ology is also pivotal to researchers interested in studying the
biomechanics and rheology inside a mechanically scaffold-sup-
ported coronary artery. To accurately describe the biomechani-
cal environment of a coronary artery, a 3-D geometry of the
device struts and lumen outline is necessary.40 By applying
the proposed method to BVS, one can accurately detect the out-
line of BVS struts and the luminal border in each OCT frame,
and this result can be translated to produce a 3-D geometry using

well-known 3-D OCT reconstruction algorithms.41 To assess
the feasibility of this translation, we performed a frame failure
analysis, which uses a series of different threshold error rates
and calculates the fraction of segmented frames that need to
be discarded. We found that the FFR drops exponentially
[Figs. 12(a)–12(d)], and this steep drop indicates a low detection
error. Given this FFR error analysis in addition to other valida-
tion metrics (PPV, regression, and Bland–Altman analysis), our
methodology with minimal manual calibration to remove erro-
neous frames can be translated to produce a 3-D geometry of the
mechanically supported coronary artery.

Developing a patient-specific 3-D model will allow research-
ers to run structural and fluid dynamics computations within the
stented coronary artery.42 This crucial analysis will provide cli-
nicians with quantitative metrics to assess cardiovascular func-
tion postendovascular polymeric scaffold implantation and
isolate contributing biomechanical factors. While the current
generation of bioresorbable scaffolds has been withdrawn from
the market, numerous companies are actively working to develop
the next generation of polymeric endovascular implants. We note
that such an algorithm will become even more important as it will
enable us and others to study the biomechanical and hemo-
dynamic effects of these devices. We define here an algorithm
that can be extended well beyond the idea of bioresorbable scaf-
folds and especially to first-generation devices.

6 Conclusion
We present a fully automated method to segment polygonal
shaped polymeric struts and the luminal border in intracoronary

Fig. 13 (a, b) Example of algorithm applied to cases with blood artifacts, noise, poor image quality, and
(c) incomplete struts. The first column of each image is the raw OCT image, the second column shows
the detected struts, and the third column shows the detected lumen border.
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OCT images. The proposed methodology was applied to BVS
struts and validated against expert annotation using a Bayesian
regression, Bland–Altman analysis, and common validation
metrics. Our method proved to be computationally efficient and
produced accurate results across all tested metrics. Detection of
struts and lumen border is crucial for studying the efficacy of
endovascular devices by building patient-specific 3-D models
and performing biomechanical simulations.35 The validation
results of the proposed methodology show that it can be used as
a foundation for creating such models to mechanistically study
and understand the effect of polymeric scaffolds on cardio-
vascular function. A holistic insight into cardiovascular function
will allow us to move toward a continuum of more reliable and
effective patient-specific treatment strategies.
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