
Morphometric analysis of
erythrocytes from patients with
thalassemia using tomographic
diffractive microscopy

Yang-Hsien Lin
Shin-Shyang Huang
Shang-Ju Wu
Kung-Bin Sung

Yang-Hsien Lin, Shin-Shyang Huang, Shang-Ju Wu, Kung-Bin Sung, “Morphometric analysis of
erythrocytes from patients with thalassemia using tomographic diffractive microscopy,” J. Biomed.
Opt. 22(11), 116009 (2017), doi: 10.1117/1.JBO.22.11.116009.



Morphometric analysis of erythrocytes from patients
with thalassemia using tomographic diffractive
microscopy

Yang-Hsien Lin,a Shin-Shyang Huang,a Shang-Ju Wu,b and Kung-Bin Sunga,c,d,*
aNational Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taiwan
bNational Taiwan University Hospital, Department of Internal Medicines, Taiwan
cNational Taiwan University, Department of Electrical Engineering, Taiwan
dNational Taiwan University, Molecular Imaging Center, Taiwan

Abstract. Complete blood count is the most common test to detect anemia, but it is unable to obtain the abnor-
mal shape of erythrocytes, which highly correlates with the hematologic function. Tomographic diffractive
microscopy (TDM) is an emerging technique capable of quantifying three-dimensional (3-D) refractive index
(RI) distributions of erythrocytes without labeling. TDM was used to characterize optical and morphological prop-
erties of 172 erythrocytes from healthy volunteers and 419 erythrocytes from thalassemic patients. To efficiently
extract and analyze the properties of erythrocytes, we developed an adaptive region-growing method for auto-
matically delineating erythrocytes from 3-D RI maps. The thalassemic erythrocytes not only contained lower
hemoglobin content but also showed doughnut shape and significantly lower volume, surface area, effective
radius, and average thickness. A multi-indices prediction model achieved perfect accuracy of diagnosing thal-
assemia using four features, including the optical volume, surface-area-to-volume ratio, sphericity index, and
surface area. The results demonstrate the ability of TDM to provide quantitative, hematologic measurements
and to assess morphological features of erythrocytes to distinguish healthy and thalassemic erythrocytes. © 2017
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1 Introduction
Erythrocytes, commonly known as red blood cells (RBCs), are
biconcave in shape to facilitate the diffusion of oxygen and car-
bon dioxide into and out of the cell. Previous studies have indi-
cated that altered RBC morphology is an important feature in
distinguishing a variety of blood-related diseases in the field
of hematology.1 In intrinsic hemolytic anemia such as hereditary
spherocytosis, hereditary elliptocytosis, sickle-cell disease, and
thalassemia, RBCs show abnormal membrane structure and
hemoglobin configuration due to genetic defects and cause-
related symptoms in patients.2,3 For example, thalassemia causes
ineffective erythropoiesis and hemolysis, and the severity of
thalassemia is determined by the accumulation of abnormal
RBCs with defective α∕β globin chains.4

Complete blood count is the most common test used to diag-
nose anemia by measuring the physiological and biochemical
properties such as the size, count, and hemoglobin content of
RBCs. However, the detailed morphological information
about individual cells is unavailable in conventional complete
blood count results. For analyzing the shape of RBCs, peripheral
blood smear is obtained, stained, and examined with bright-field
microscopy. However, the contrast is mainly provided by stain-
ing, which is qualitative and may alter the morphology of RBCs.
Several advanced optical techniques have been developed to
obtain more detailed morphological information of RBCs. In
defocusing microscopy, the contrast between bright-field
images captured at two different focal planes is used to calculate

the RBC thickness profile and volume.5 To get the precise shape
of the RBC, it is necessary to know the refractive index (RI) of
the RBC, which can be estimated by imaging a small polysty-
rene bead in the same field of view as the RBC. However, in
clinical applications where RIs of diseased RBCs are highly var-
iable between individual RBCs, it is impractical to measure the
RI of each RBC. Scanning flow cytometer (SFC) is a high-
throughput technique that automatically quantifies the morphol-
ogy, RI, and hemoglobin content of individual RBCs at the rate
of hundreds of cells per second, making it suitable for clinical
applications.6,7 SFC obtains the RBC information by fitting
measured angular light scattering patterns of RBCs with theo-
retical values that are obtained using models of normal RBC
shape based on minimization of bending energy of the mem-
brane and assumptions about symmetry of RBC shape.
Further efforts are needed to extend SFC to profiling diseased
RBCs that often present abnormal and/or nonsymmetrical
shapes. Similar approaches have been reported to extract the
RBC diameter based on angular light scattering patterns of
RBCs in microfluidic flows8 and to extract the volume and sur-
face area of RBCs from polarization characteristics of scattered
light.9 These two methods are limited to known and fixed shapes
of RBCs and do not provide RI information.

Recently, label-free quantitative phase imaging (QPI) tech-
niques have been developed to obtain two-dimensional (2-D)
phase images, ϕðx; yÞ ¼ ð2π∕λÞ∫ ½nðx; y; zÞ − n0�dz, of individ-
ual cells and tissue slices, where λ is the wavelength of the light
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source, nðx; y; zÞ and n0 are the local RI of the specimen and
the RI of the medium, respectively.10,11 Integrating the phase
over the whole area of an RBC phase image yields the so-
called optical volume (OV), OV ¼ ðλ∕2πÞ RR ϕðx; yÞdx dy ¼
ðλ∕2πÞ RRR ½nðx; y; zÞ − n0�dz dx dy.12 For a homogeneous solu-
tion, the increase in RI over the medium RI (n0) is proportional
to the mass density or concentration of the solute molecule and
is formulated as n − n0 ¼ αC, where α is the RI increment fac-
tor and C is the mass density of the solute, respectively.13

Therefore, the OV calculated from an RBC phase image has
been proposed to assess the dry mass of the hemoglobin in
the RBC, assuming that hemoglobin is the dominant constituent
of RBCs.10

The physical thickness and three-dimensional (3-D) RI maps
of RBCs can be reconstructed from multiple 2-D phase images
acquired at various illumination directions using diffraction
tomography techniques.14 Recently, studies have characterized
3-D morphological indices of RBCs including the surface area,
volume, and sphericity and have demonstrated significant
differences between RBCs from the cord blood of newborn
infants and that of maternal or nonpregnant women15 and
between normal RBCs and RBCs from patients with diabetes
mellitus,16 malaria,14 iron-deficiency anemia,17 reticulocytes,17

hereditary spherocytosis,17 and sickle-cell disease.11,17–19 These
3-D RBC parameters provide additional morphometrics for
hematologists to better distinguish and understand blood
diseases related to deformation of RBCs.

To fully exploit the advantages of QPI and diffraction tomog-
raphy techniques for quantifying the hemoglobin content and
morphological properties of RBCs, it is essential to delineate
individual RBCs from 2-D phase images or 3-D RI maps,
which is very time-consuming if done manually due to the
huge data size. Moon et al. applied the marker-control watershed
algorithm to automatically segment RBCs from 2-D quantitative
phase images.20–23 From segmented 2-D RBC images, they esti-
mated various 2-D morphological features.21 Classifying three
typical RBC shapes including stomatocyte, discocyte, and echi-
nocyte using the extracted features was also demonstrated.23

However, a precise and automatic tool to delineate 3-D RI
maps and obtain 3-D morphological properties efficiently is
not available.

In this paper, we focused on characterizing the OV and 3-D
morphological information of RBCs from patients with thalas-
semia, one type of hereditary hemoglobinopathy with high
prevalence in the world. Morphological features of thalassemic
RBCs have not been thoroughly studied without staining. We
employed a nearly common-path tomographic microscope
recently developed by our group to acquire 3-D RI maps of
RBCs obtained from 7 healthy subjects and 27 thalassemic
patients. An automatic segmentation method was developed,
validated with a numerical phantom, and applied to delineate
the 3-D RI maps of the RBCs. We then quantified the OV
and various morphological indices of the RBCs. The diagnostic
accuracy of using these indices to distinguish thalassemic RBCs
from normal RBCs, both at the single-cell level and on the per-
patient basis, is presented.

2 Materials and Methods

2.1 RBCs Images Acquisition

To construct a 3-D RI map of an RBC, we acquired a series of 2-
D amplitude/phase images of the RBC using a nearly common-

path tomographic diffractive microscope (cTDM). The details of
the system setup were described in a previous publication.24

Briefly, cTDM uses a 532-nm continuous-wave laser to illumi-
nate a semitransparent specimen with a collimated beam. The
beam diameter is at least seven times larger than the diameter
of the object and constant throughout the thickness of the object.
The incident angle is scanned by a single-axis galvanometer
mirror (Nutfield Technology Inc.) to be in the range of −65 deg
to 65 deg in the medium. The transmitted field through the
specimen is collected by an objective lens (Olympus
UPLSAPO 100XO, 1.4 NA), interfered with a uniform refer-
ence beam, and imaged by a high-speed CMOS camera
(GZL-CL-41C6M-C, Gazelle, Point Grey) with a transverse
magnification of about 85. The reference beam is generated
by a transmission grating located near an intermediate image
plane of the objective lens.25 The amplitude/phase images are
retrieved from the interference images by band-pass filtering
in the spatial frequency domain without zero-padding, followed
by a Fourier-based phase unwrapping method.26,27 3-D RI maps
are reconstructed iteratively based on optical diffraction tomog-
raphy with direct interpolation in the Fourier domain and the
positivity constraint.28 All of the phase retrieval and 3-D
reconstruction steps were performed on graphic processing
units. To assess the spatial resolution of cTDM, we extracted
cross sectional RI images through the center of the reconstructed
RI tomogram of a specimen and profiled RI distributions along
the optical axis and transverse directions. The edge response,
defined as the distance between 10% and 90% of the maximum
RI above the medium RI, was computed. The edge responses in
the transverse and axial directions of RI images of 10 μm poly-
styrene beads were 0.35 and 1.5 μm, respectively. The axial
edge response estimated from RI images of RBCs was about
1.0 μm. The voxel size of a reconstructed 3-D RI tomogram
was 0.129 × 0.129 × 0.129 ðμm3Þ. Figure 1 shows a represen-
tative RI distribution of a normal RBC in three orthogonal
sections.

2.2 RBC Sample Preparation and Data Acquisition

This study was approved by the Institutional Review Board of
National Taiwan University Hospital, and an informed consent
was obtained from each subject. We collected 172 hematologi-
cally normal RBCs from seven healthy subjects (six males,
one female, mean age 23� 2 y/o) and 419 thalassemic RBCs
from 27 adult thalassemia-minor patients (14 males, 13 female,
mean age 59� 15 y/o). All patients had not received blood trans-
fusions for at least 2 months prior to the time of participating the
study. After the blood was drawn from a subject, it was stored in
anticoagulant at room temperature (22°C) for less than 1.5 h
before being imaged with cTDM. The blood sample was diluted
1∶4000 in phosphate-buffered saline containing 1% (wt/vol) of
bovine serum albumin and gently placed on a glass slide to
allow RBCs to settle on the surface. Five hundred interference
images were captured at a speed of 180 fps under incident angles
equally distributed within the�65 deg range to obtain the 3-DRI
tomogram of an RBC. About 15 RBCs were imaged for each
subject, and the measurements took about 1 h. All of the experi-
ments were performed at room temperature.

2.3 RBC Segmentation from 3-D RI Maps

We proposed an adaptive volume segmentation method, 3-D
adaptive region-growing (3D-ARG), to delineate the precise
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3-D contour of RBCs automatically. 3D-ARG combines the
steps of volume scaling and Otsu’s thresholding with 3-D region
growing (Fig. 2). The volume scaling technique was imple-
mented to improve the computation efficiency of region grow-
ing, and Otsu’s thresholding was used to accelerate the selection
of the seed region. The main segmentation method, 3-D region
growing, was implemented to delineate the area of an RBC from
its 3-D RI map as precisely as possible.

Volume scaling is a resampling technique in computer vision.
Based on the concept of multiresolution representation, trilinear
interpolation was used as the scaling kernel to reduce the size of
3-D RI maps and expand the segmentation masks hierarchically
until the finest resolution was achieved. This method has an ad-
vantage of significantly reducing the computational cost and
complexity. In this study, the scaling level was set to three to
promote efficiency and avoid the oversmooth problem.

Otsu’s method is a clustering-based image thresholding algo-
rithm that calculates the optimal threshold in separating the fore-
ground (sample) and background (medium) areas with the
minimum within-class variance29

EQ-TARGET;temp:intralink-;e001;63;338σ2wðtÞ ¼ wbðtÞσ2bðtÞ þ wfðtÞσ2fðtÞ; (1)

where w and σ2 denote the weight and variance of the back-
ground (b) and foreground (f) separated by a threshold t,

respectively. Otsu’s thresholding was implemented as an initial
step to obtain a rough sample region from 3-D RI maps at the
smallest matrix size.

After the Otsu’s method separated the two classes demon-
strating a roughly bimodal histogram, the coordinate of the cent-
roid, Cðx; y; zÞ, was estimated from the separated foreground by

EQ-TARGET;temp:intralink-;e002;326;492Cðx; y; zÞ ¼ 1

n

Xn

i¼1

cðx; y; zÞ; (2)

where cðx; y; zÞ denotes the coordinates of the foreground
region and n is the total number of foreground voxels.

3-D region growing is a region-based segmentation
method.30 The first delineation was formed by continuously
growing from the seed point C to adjacent voxels that were in
the initial foreground found by Otsu’s thresholding. Any uncon-
nected artifacts can be eliminated at this step. Subsequently, the
second and final delineation masks were made by growing from
the voxels selected by the previous delineation. Whether or not
to grow to adjacent voxels was determined by the RI difference
between the voxel of interest and the maximum value in the
Otsu’s foreground region. Based on our experience, the maxi-
mum RI range of RBCs is ∼0.02. Therefore, the criterion for
growing was set such that the RI of the newly connected

Fig. 2 The flowchart of 3D-ARG.

Fig. 1 Orthogonal views of an RBC reconstructed from cTDM data. Some artifacts (white arrows) are
clearly visible after the reconstruction.
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voxel should be within 0.02 of the maximum RI in the initial
foreground region.

2.4 Calculation of Optical Indices and Geometric
Indices

We measured the projection area and OVof each RBC from its
phase image measured under normal incidence of the illumina-
tion beam. After reconstructing and delineating the 3-D RI map
of an RBC, we calculated its average RI (RIavg) from a
0.39-μm-thick slice around the focal plane to alleviate the prob-
lem of reduced RI near the cell boundary due to lower axial res-
olution. From the delineated 3-D mask of an RBC, fðx; y; zÞ, we
obtained the contour and the total number of voxels identified as
the RBC. Subsequently, we calculated the surface-area-to-
volume ratio (S∕V), where S is the surface area and V is the
volume. The sphericity index (SI) is expressed as

EQ-TARGET;temp:intralink-;e003;63;568SI ¼ π1∕3ð6VÞ2∕3
S

: (3)

In addition, changes of the RBC thickness with the radial posi-
tion can be used to assess the cellular shape. To analyze the
thickness distribution, we constructed a 2-D thickness map
Tðx; yÞ [shown in Fig. 3(a)] from fðx; y; zÞ by counting the
number of voxels along the optical axis of the objective lens
(i.e., z-axis)

EQ-TARGET;temp:intralink-;e004;63;463Tðx; yÞ ¼
Xzmax

z¼0

fðx; y; zÞ: (4)

The centroid of the RBC was obtained from fðx; y; zÞ using
Eq. (2) and projected onto the x-y plane. We estimated the thick-
ness as a function of the radial position along various radial
directions. The radial position of a pixel in Tðx; yÞ was defined
as its distance from the projection of the RBC centroid in the x-y
plane, normalized to the distance between the projection of the
centroid and the boundary of Tðx; yÞ in the corresponding direc-
tion to compensate for any irregular cellular shape. Finally, we
averaged the thickness distributions over all radial directions to
obtain an average radial distribution of the thickness, as shown
in Fig. 3(b). To evaluate the biconcave shape of RBCs, we
defined an index Δ75 to describe the difference between the cen-
tral thickness and the thickness at three quarters of the normal-
ized radial position

EQ-TARGET;temp:intralink-;e005;326;752Δ75 ¼
T75 − T0

Tavg

; (5)

where Tavg is the average thickness of the entire RBC, T75 is the
average thickness at 75% of the normalized radial position, and
T0 is the thickness at the centroid of the RBC. The effective
radius of the RBC (Ravg) was derived by averaging the distances
between the projection of the centroid and the boundary of
Tðx; yÞ over all radial directions.

2.5 Evaluation of the 3D-ARG Segmentation
Method

To evaluate the agreement/differences between the manual
delineation and the automatic 3D-ARG segmentation, linear
regression and Bland–Altman plots were used to analyze six
morphological features extracted directly from 3-D RI maps.
The performance of each of the features in distinguishing
between healthy and thalassemic RBCs was evaluated using
receiver operating characteristic (ROC) curves. To further
enhance the prediction power, we used logistic regression (LR)
to combine multiple optical and morphological indices and build
a prediction model with the highest probability of distinguishing
thalassemia. The most relevant parameters were selected using a

Fig. 3 Illustration of different thickness distributions of a healthy RBC and a thalassemic RBC.
(a) Thickness maps and (b) radial distribution of the thickness.

Fig. 4 The digital RBC phantom based on Cassini model. The volume
is 87 fL, and the diameter is 7 μm.
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sequential forward search based on the p-values for the good-
ness-of-fit test associated with diagnostic results. Predictive per-
formances of various classifiers were evaluated using the area
under the ROC curve (AUC). All the statistical analyses were

performed with MedCalc (MedCalc software, Mariakerke,
Belgium) in this study.

3 Results

3.1 Validation of Three-Dimensional Adaptive
Region Growing

To evaluate the accuracy of segmentation by 3D-ARG, we con-
structed a 3-D digital RBC phantom based on Cassini ovals.31 In
Cartesian coordinates, the contour of the digital phantom in the
x-z plane is described by

EQ-TARGET;temp:intralink-;e006;326;628ðx2 þ z2 þ a2Þ2 − 4a2ðx2Þ ¼ b4: (6)

To generate a Cassini oval, two focal points separated by a
distance of 2a are set initially in the x-z plane. The contour of
the oval consists of every point in the x-z plane that has the prod-
uct of its distances to the two foci equal to b2. Finally, the con-
tour is rotated around the z-axis by 180 deg to generate the oval
surface. In this study, the RI of voxels in the phantom was

Fig. 5 Comparison of delineation results between manual delineation
(red lines) and 3D-ARG (green lines) and the volume rendering of a
healthy and a thalassemic RBC. The three selected orthogonal planes
intersect at the centroid of the RBCs.

Fig. 6 Scatter plots and Bland–Altman plots for (a) volume, (b) surface area, (c) effective radius, (d) aver-
age thickness, (e) central thickness, and (f) average thickness at the normalized radial position of 0.75 to
compare manual delineation with 3D-ARG delineation.
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assigned to be in the range of 1.340 to 1.400 and increasing from
the periphery to the center. The RI of the outside medium was
set to be 1.340 (Fig. 4). The volume of the RBC phantom mea-
sured from the 3D-ARG segmentation result was 87 fL, which is
the same as the expected value according to Eq. (6).

3.2 Evaluation of the Accuracy of the 3D-ARG
Method

The contours of RBCs delineated using the 3D-ARG method
were compared with those delineated manually (MD).

Figure 5 shows orthogonal sections of 3-D RI maps of represen-
tative healthy and thalassemic RBCs. The contouring results are
presented in red (MD) and green (3D-ARG) lines. For both
healthy and thalassemic RBCs, the segmentation results agree
with each other well. The results of quantifying morphological
parameters from 3D-ARG segmented RBCs were highly consis-
tent with those from manually segmented RBCs, as shown in
scatter plots (Fig. 6) and summarized in Tables 1 and 2.
Three derived indices including S∕V, SI, and Δ75 are also listed
in the tables. Results of linear regression showed excellent

Table 1 Morphometrics of normal RBCs extracted from manual
delineation (MD) and 3D-ARG delineation results (n ¼ 172).

Parameter Mean� SD 95% CI Minimum Maximum

V (fL)

MD 111� 19 109 to 114 68 161

3D-ARG 129� 31 124 to 133 67 221

S (μm2)

MD 136� 13 134 to 138 104 169

3D-ARG 144� 16 142 to 147 105 189

Ravg (μm)

MD 4.17� 0.20 4.14 to 4.20 3.62 4.74

3D-ARG 4.21� 0.21 4.17 to 4.24 3.63 4.87

T avg (μm)

MD 2.1� 0.4 2.0 to 2.1 1.2 3.1

3D-ARG 2.4� 0.6 2.3 to 2.5 1.0 4.1

T 0 (μm)

MD 1.7� 1.0 1.6 to 1.9 0.0 3.9

3D-ARG 2.3� 1.2 2.1 to 2.4 0.0 4.9

T 75 (μm)

MD 2.2� 0.2 2.2 to 2.3 1.9 2.8

3D-ARG 2.5� 0.0 2.5 to 2.6 1.8 3.8

S∕V (μm−1)

MD 1.24� 0.132 1.22 to 1.26 0.973 1.58

3D-ARG 1.16� 0.170 1.14 to 1.19 0.826 1.70

SI

MD 0.824� 0.053 0.816 to 0.832 0.723 0.947

3D-ARG 0.845� 0.065 0.835 to 0.855 0.698 1.01

Δ75

MD 0.3� 0.6 0.3 to 0.4 −0.4 1.7

3D-ARG 0.2� 0.6 0.1 to 0.3 −0.3 1.7

Note: SD, standard deviation; CI, confidence interval for the mean;
MD, manual delineation; 3D-ARG, three-dimensional adaptive region
growing.

Table 2 Morphometrics of thalassemic RBCs extracted from manual
delineation (MD) and 3D-ARG delineation results (n ¼ 419).

Parameter Mean� SD 95% CI Minimum Maximum

V (fL)

MD 85� 18 84 to 87 40 147

3D-ARG 98� 29 95 to 101 36 215

S (μm2)

MD 127� 17 125 to 128 71 176

3D-ARG 134� 21 132 to 136 104 205

Ravg (μm)

MD 4.03� 0.30 4.00 to 4.06 2.91 4.85

3D-ARG 4.05� 0.30 4.02 to 4.08 0.90 4.89

T avg (μm)

MD 1.4� 0.4 1.4 to 1.5 0.7 2.9

3D-ARG 1.7� 0.6 1.6 to 1.7 0.8 3.7

T 0 (μm)

MD 0.5� 0.8 0.4 to 0.6 0.0 3.4

3D-ARG 0.8� 1.2 0.7 to 1.0 0.0 4.3

T 75 (μm)

MD 2.1� 0.2 2.1 to 2.1 1.5 2.7

3D-ARG 2.3� 0.3 2.2 to 2.3 1.4 3.5

S∕V (μm−1)

MD 1.51� 0.175 1.50 to 1.53 1.03 2.25

3D-ARG 1.43� 0.240 1.41 to 1.45 0.889 2.30

SI

MD 0.739� 0.055 0.733 to 0.744 0.621 0.965

3D-ARG 0.759� 0.071 0.752 to 0.766 0.600 0.986

Δ75

MD 1.3� 0.7 1.2 to 1.4 −0.6 2.5

3D-ARG 1.1� 0.8 1.0 to 1.2 −0.6 2.6

Note: SD, standard deviation; CI, confidence interval for the mean;
MD, manual delineation; 3D-ARG, three-dimensional adaptive region
growing.

Journal of Biomedical Optics 116009-6 November 2017 • Vol. 22(11)

Lin et al.: Morphometric analysis of erythrocytes from patients with thalassemia. . .



correlations between the 3D-ARG and the MD results for all the
parameters (Pearson’s correlation coefficients: V, 0.92; S, 0.92;
Ravg, 0.98; Tavg, 0.91; T0, 0.89; T75, 0.83; S∕V, 0.84; SI, 0.83;
and Δ75, 0.86. All of the p-values of F-tests were less than
0.001). Bland–Altman analysis revealed that the 3D-ARG
segmentation systematically overestimated the morphological
indices directly obtained from 3-D RI maps, including V
(14� 16 fL), S (8� 9 μm2), Ravg (0.03� 0.05 μm), Tavg

(0.3� 0.3 μm), T0 (0.4� 0.6 μm), and T75 (0.2� 0.2 μm).

3.3 Performances of Various Indices to Distinguish
Thalassemia

Both of the optical indices, OV and RIavg, revealed significant
differences between patients and normal subjects. Results of OV
measurements were 4.3� 0.7 fL for thalassemic RBCs and
5.9� 0.7 fL for healthy subjects (Student’s t-test: p < 0.001),
suggesting that the hemoglobin content of thalassemic subjects
was 27% lower than that of healthy subjects. RIavg also dem-
onstrated a significant difference between thalassemic and
healthy RBCs (1.389� 0.008 versus 1.395� 0.006; Student’s
t-test: p < 0.001).

The ROC curves for classifying individual thalassemic RBCs
are shown in Fig. 7 with the corresponding AUC listed in paren-
theses. Table 3 summarizes the diagnostic performance of the
evaluated indices on a per-cell basis. It can be seen that OV
achieved the highest accuracy of detecting thalassemia

(AUC > 0.9). The S∕V and SI also demonstrated excellent
ability to distinguish thalassemia (AUC > 0.8). The best
multi-indices models built by LR included four indices: OV,
S∕V, SI, and S. The models are characterized by the following
linear equations:

EQ-TARGET;temp:intralink-;e007;326;306

pmanualðxÞ ¼ −143.14 − 0.24 × OVþ 42.73 × S∕V þ 85.14

× SI þ 0.26 × S; (7)

EQ-TARGET;temp:intralink-;e008;326;245

p3D-ARGðxÞ ¼ −45.32 − 0.26 × OVþ 17.90 × S∕V þ 26.01

× SI þ 0.13 × S: (8)

For classifying individual RBCs, AUCs of the two models
with MD and 3D-ARG were 0.967 and 0.962, respectively.
The diagnostic accuracy was 93.57% and 92.73%, respec-
tively. Since in a clinical setting multiple RBCs can be imaged
and a diagnosis is to be reached for each subject, we also evalu-
ated the accuracy of diagnosing thalassemia with various
indices on a per-subject basis; the results are summarized in
Table 4. The diagnostic accuracy of both the OV and LR
models achieved 100% for both manual and 3D-ARG
segmentations.

Fig. 7 ROCs curves of (a) projection area (PA), OV and RIavg, (b, d) morphological indices
extracted from 3-D RI maps with manual delineation, (c, e) morphological indices extracted from
3-D RI maps with 3D-ARG delineation, and (f) LR models for detecting individual RBCs with the two
delineation methods. The closer the curve is to the upper left corner, the better the diagnostic perfor-
mance is.
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Table 3 Comparison of diagnostic performance on individual RBCs.

Parameter
Sensitivity

(%)
Specificity

(%)
PPV
(%)

NPV
(%)

Accuracy
(%) AUC

Projection
area

57.04 67.44 81.02 39.19 60.07 0.630

OV 87.83 91.86 96.33 75.60 89.00 0.943

RIavg 60.38 73.79 86.94 39.19 63.83 0.699

V

MD 76.85 80.23 90.45 58.72 77.83 0.846

3D-ARG 67.06 77.33 87.81 49.08 70.05 0.776

S

MD 63.48 63.95 81.09 41.82 63.62 0.669

3D-ARG 62.05 66.86 82.02 41.97 63.45 0.668

S∕V

MD 80.91 85.47 93.13 64.76 82.24 0.900

3D-ARG 57.76 93.6 95.65 47.63 68.19 0.818

SI

MD 75.42 86.05 92.94 58.97 78.51 0.877

3D-ARG 69.45 81.98 90.37 52.42 73.10 0.819

Ravg

MD 52.74 75.00 83.71 39.45 59.22 0.651

3D-ARG 39.86 87.79 88.83 37.47 53.81 0.663

T avg

MD 71.6 88.37 93.75 56.09 76.48 0.871

3D-ARG 62.29 86.05 91.58 48.37 69.20 0.797

T 0

MD 71.36 86.63 92.86 55.39 75.80 0.838

3D-ARG 65.39 84.88 91.33 50.17 71.06 0.800

T 75

MD 55.37 81.98 88.21 42.99 63.11 0.739

3D-ARG 50.6 79.07 85.48 39.65 58.89 0.700

Δ75

MD 72.08 86.05 92.64 55.85 76.15 0.841

3D-ARG 73.27 76.74 88.47 54.10 74.28 0.802

LR model

MD 95.47 88.95 95.46 88.96 93.57 0.967

3D-ARG 95.23 86.63 94.55 88.17 92.73 0.962

Note: PPV, positive predictive value; NPV, negative predictive value;
MD, manual delineation; 3D-ARG, three-dimensional adaptive region
growing; LR, logistic regression.

Table 4 Comparison of diagnostic performance on a per-subject
basis.

Parameter
Sensitivity

(%)
Specificity

(%)
PPV
(%)

NPV
(%)

Accuracy
(%) AUC

Projection
area

74.07 85.71 95.24 46.15 76.47 0.783

OV 100 100 100 100 100 1.000

RIavg 70.37 85.71 95.00 42.86 73.53 0.786

V

MD 100 85.71 96.43 100 97.06 0.947

3D-ARG 81.48 85.71 95.65 54.54 82.35 0.852

S

MD 51.85 100 100 35.00 61.76 0.783

3D-ARG 62.96 85.71 94.44 37.50 67.64 0.725

S∕V

MD 100 85.71 96.43 100 97.06 0.968

3D-ARG 92.59 85.71 96.15 74.99 91.17 0.921

SI

MD 96.30 85.71 96.30 85.73 94.12 0.952

3D-ARG 88.89 85.71 96.00 66.67 88.24 0.926

Ravg

MD 70.37 100 100 46.67 76.47 0.794

3D-ARG 59.26 100 100 38.89 67.65 0.804

T avg

MD 100 85.71 96.43 100 97.06 0.952

3D-ARG 85.19 85.71 95.83 60.01 85.30 0.884

T 0

MD 88.89 85.71 96.00 66.67 88.24 0.931

3D-ARG 88.89 85.71 96.00 66.67 88.24 0.905

T 75

MD 85.19 71.43 92.00 55.56 82.36 0.804

3D-ARG 70.37 71.43 90.48 38.46 70.59 0.735

Δ75

MD 92.59 85.71 96.15 74.99 91.17 0.937

3D-ARG 92.59 85.71 96.15 74.99 91.17 0.937

LR model

MD 100 100 100 100 100 1.000

3D-ARG 100 100 100 100 100 1.000

Note: PPV, positive predictive value; NPV, negative predictive value;
MD, manual delineation; 3D-ARG, three-dimensional adaptive region
growing; LR, logistic regression.
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4 Discussion and Conclusion
We successfully demonstrated that the developed 3D-ARG
method enables automatic extraction of morphological param-
eters of RBCs from 3-D RI maps acquired with cTDM.
Compared with the manual contouring performed by a physi-
cian, the 3D-ARG segmentation method overestimates the V,
S, Ravg, Tavg, T0, and T75 of the RBCs (Fig. 6 and Tables 1–2).
There are two main reasons that may have caused the minor
estimation bias in the morphological measurements. First,
speckle noise intrinsic to cTDM due to the high spatial coher-
ence of the light source introduces errors in both the amplitude
and phase of the measured scattered field, causing artifacts after
reconstruction.32 Second, the axial resolution is relatively large
(1 μm) due to the incomplete coverage of projection angles28

and aberrations generated by optical components such as the
high numerical-aperture objective lens. Despite these limita-
tions, the results demonstrate that the developed 3D-ARG is
a reliable automatic segmentation tool for distinguishing thalas-
semic RBCs from normal RBCs with an accuracy comparable to
the time-consuming manual delineation by an expert physician.
In addition, 3D-ARG has the advantage of quantifying various
3-D morphological indices rapidly from the delineation results
rather than estimating parameters via 2-D QPI planimetry.20–22

As summarized in Tables 1 and 2, average values of morpho-
logical indices of healthy subjects including the V, S, Ravg, Tavg,
T0, and T75 are significantly higher than those of thalassemic
patients (Student’s t-test: p < 0.001). This phenomenon can
be attributed to the smaller size of thalassemic RBCs than
healthy ones. In addition, the thalassemic RBCs have signifi-
cantly larger S∕V and Δ75 and significantly smaller SI than nor-
mal ones (Student’s t-test: p < 0.001). The differences in the
three shape-related indices reflect the fact that the 3-D RI
maps of most thalassemic RBCs are doughnut-shaped as
shown in Figs. 3 and 5. The elevated S∕V of thalassemic
RBCs may indicate abnormalities in cell volume regulation and
deformability. It is worth mentioning that for normal RBCs a
larger S∕V is likely to promote efficiency in the exchange of
oxygen and carbon dioxide. However, the deficient hemoglobin
content of microcytic RBCs in thalassemic patients still causes
hypoxia of tissues.33

The AUC results in Tables 3 and 4 demonstrate that OV is the
best single index to distinguish thalassemia. If contributions of
other constituents of an RBC to the RI are ignored, OV is pro-
portional to the dry mass of hemoglobin, which equals the aver-
age hemoglobin concentration multiplied by the volume of an
RBC. The results of RIavg show that thalassemic RBCs have
significantly smaller average RI than healthy RBCs, indicating
reduced hemoglobin concentrations in thalassemic RBCs. Since

both the hemoglobin concentration and the volume decrease in
thalassemic RBCs, OVaugments the difference between normal
and thalassemic RBCs and thus is well suited for distinguishing
between healthy and thalassemic RBCs.

The LR method shows excellent performance in distinguish-
ing thalassemic from healthy RBCs since it utilizes an optimal
set of features to build the prediction model. As shown in
Table 3, combining multiple indices improved the diagnostic
accuracy of distinguishing individual thalassemic RBCs, com-
pared with just using a single index. This demonstrates the
major advantage of supplementing cTDM with 3D-ARG to
automatically obtain 3-D morphological features of RBCs for
comprehensive characterization of cellular shape and size.
Because causes of various blood-related diseases differ, the
method demonstrated in this paper has the potential to discrimi-
nate other blood disorders as well. Sickle cell disease, for exam-
ple, is characterized by RBCs with significantly abnormal
shapes and slightly different hemoglobin contents.11 The heredi-
tary spherocytosis is another blood disease with normal hemo-
globin content and abnormal membrane structure.17 We believe
that building a multi-indices model based on automatically seg-
mented 3-D RI maps of RBCs is a viable strategy for obtaining
the optimal combination of morphological indices to better dis-
tinguish blood diseases than only using indices extracted from
2-D phase images or a single index.

Other high-resolution imaging techniques, such as the scan-
ning electron microscopy (SEM), confocal microscopy, and
third-harmonic generation (THG) microscopy, are also capable
of visualizing the shape of RBCs at high spatial resolution.34–36

SEM has an order of magnitude higher spatial resolution, but the
cell fixation and labeling processes are time consuming and may
alter the shape of cells. Obtaining 3-D images of RBCs using
confocal microscopy or THG is time-consuming because of
the required point-scanning process. In addition, the cost of a
femtosecond laser source required for THG imaging is prohibi-
tively high for clinical examinations. cTDM is more cost effec-
tive and better suited to providing 3-D morphological
information of unstained living cells almost in their natural
state. In addition, the hemoglobin content can be obtained
simultaneously from the 2-D phase image acquired under nor-
mal incidence of the illumination beam.

Since living RBCs were analyzed in the study, it is necessary
to discuss effects of dynamic changes in cellular morphology.
First, to find out whether there is significant change in RBC vol-
ume during the 1 h measurement time, we analyzed the corre-
lation between the volume and measurement time of RBCs in
data acquired from three healthy volunteers. In each dataset, the
extracted RBC volumes were normalized to the volume of the

Fig. 8 Illustration of the (a) normalized volume and (b) sphericity index of RBCs from three volunteers
over time of measurement.
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first measured RBC, as shown in Fig. 8(a). Since the slopes of
linear regression approach zero, we conclude that no apparent
change in the RBC volume was observed during the 1 h meas-
urement time. Interestingly, Fig. 8(b) demonstrates that the SI of
RBCs in the three datasets decreased by an average of 7% in 1 h.
This might be caused by gradual flattening of RBCs on the glass
slide. Second, the flicking of the RBC membrane at the time
scale of 2 s is related to biophysical properties of the
membrane37 and has been quantified with QPI to range from
49 to 60 nm.16 Considering the thickness of healthy RBCs
being about 2 μm, the flicking causes less than 3% fluctuations
in the volume. Therefore, it was ignored in this study. Whether
the morphological dynamics provide additional information for
diagnostics requires further research.

The reconstruction method used in the study assumes the
Rytov approximation, which is limited to weakly scattering
objects with a low phase gradient and works independently
of the object size.14,38 The validity condition of applying the
Rytov approximation to optical diffraction tomography of bio-
logical cells has been discussed in Refs. 38 and 39. In summary,
the local variation of RI in an object over the length scale of
wavelength, Δn, needs to be much less than one. In the results
of the current study, the maximum Δn in an RBC is in the range
of 0.032 to 0.061. Therefore, it is appropriate to apply the Rytov
approximation. In addition, human erythrocytes lack cell
nucleus and organelles and mainly consist of hemoglobin uni-
formly distributed in the cytoplasm. Since the purpose of this
study is to distinguish healthy and thalassemic erythrocytes
via the morphometric analysis, the detailed structure of RBCs
such as cell membrane is ignored. Previous studies on light scat-
tering properties of biological cells40 and RBCs41 have shown
that the scattering strength of cells is dominated by forward scat-
tering, and backward scattering (i.e., a scattering angle larger
than 90 deg) is more sensitive to RI fluctuations with sizes sim-
ilar to or smaller than the wavelength. To confirm that collecting
scattered fields with scattering angles below 65 deg is sufficient
to reconstruct RI tomograms of RBCs for morphometric analy-
sis, we estimated the angular scattering intensity distribution of
RBCs by the finite-difference time-domain method,42 using the
RI tomogram of a representative RBC obtained in the study. We
found that the forwardly scattered light in the scattering angle
range below 65 deg accounted for 99.99% of the total scattering.

In conclusion, we successfully developed an automatic seg-
mentation method for extracting RBCs from 3-D RI maps
acquired with cTDM and demonstrated significant differences
in morphometric features between healthy and thalassemic
RBCs without staining. The multivariable LR method shows
perfect accuracy for distinguishing between healthy subjects
and patients with thalassemia. With the tiny amount of blood
sample required and convenient label-free 3-D imaging capabil-
ity, we believe that this technique could be beneficial for screen-
ing thalassemia in newborns. In addition, using cTDM with the
newly developed automatic segmentation tool has the potential
to identify other blood diseases associated with abnormal hemo-
globin content and/or morphology of RBCs and to facilitate the
3-D morphometric analysis of RBCs in these diseases.
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