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Abstract. Optical coherence tomography (OCT) images are usually degraded by significant speckle noise, which
will strongly hamper their quantitative analysis. However, speckle noise reduction in OCT images is particularly
challenging because of the difficulty in differentiating between noise and the information components of the speckle
pattern. To address this problem, the spiking cortical model (SCM)-based nonlocal means method is presented.
The proposed method explores self-similarities of OCT images based on rotation-invariant features of image
patches extracted by SCM and then restores the speckled images by averaging the similar patches. This method
can provide sufficient speckle reduction while preserving image details very well due to its effectiveness in finding
reliable similar patches under high speckle noise contamination. When applied to the retinal OCT image, this
method provides signal-to-noise ratio improvements of >16 dB with a small 5.4% loss of similarity. © 2014 Society

of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.6.066005]
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Optical coherence tomography (OCT) is a kind of noninvasive
high-resolution biomedical imaging technology based on low
coherence interferometry. The principle behind OCT imaging
leads to presence of speckle in the OCT images. Because speckle
carries both a noise component and structural information about
the imaged object, it is very challenging to suppress speckle noise
effectively. Various algorithms have been proposed to despeckle
OCT images. The two classes of state-of-the-art despeckling
methods are wavelet-, curvelet-, or contourlet-based methods1–4

and anisotropic diffusion-based methods.5,6 These methods
tend to provide limited speckle noise suppression or reduce
the sharpness of structural details in the case of high speckle
noise corruption.

Recently, a nonlocal means (NLM) method7 has been pro-
posed, which explores image self-similarities by the nonlocal
comparison of image patches for image denoising. The NLM
method, originally designed for Gaussian noise removal, has
lately been applied to remove speckle noise from ultrasound
images8 and synthetic aperture radar images.9 This paper
aims to extend this method to restore OCT images. However,
the NLM method measures the similarity between pixels
based on the intensities of image patches only in the transla-
tional sense without considering the orientation of each
patch. Therefore, it is difficult for this method to preserve intri-
cate details of speckled OCT images involving rotated similar
patterns. To address this problem, the spiking cortical model
(SCM) proposed in Ref. 10 is introduced into the NLM method
to despeckle OCT images by exploring rotation-invariant self-
similarities of speckled images.

Derived from several other visual cortices, the SCM is a lat-
erally connected two-dimensional neural network. When the
SCM is used for image processing, each network neuron corre-
sponds to an input image pixel. The neuron Ni;j at (i; j) in the
SCM receives the corresponding pixel’s normalized intensity
Ti;j as an external stimulus and receives local stimuli from
its neighboring neurons. When the combined external and
local stimuli Fi;j, the internal activity, exceeds a dynamic thresh-
oldΘi;j,Ni;j will fire and generate a pulse output Yi;j. In the n’th
iteration, these variables are computed as10

Fi;j½n� ¼ fFi;j½n− 1� þ Ti;j þ Ti;j

X
k;l

Wi;j;k;lYk;l½n− 1�; (1)

Θi;j½n� ¼ gΘi;j½n − 1� þ hYi;j½n − 1�; (2)

Yi;j½n� ¼
�
1; Fi;j½n� > Θi;j½n�
0; Fi;j½n� ≤ Θi;j½n� ; (3)

where f and g are constants <1 and h is a large constant for
adjustment of the threshold magnitude;Wi;j;k;l is the connection
weight between the neuron Ni;j and its linking neuron Nk;l,

and it is defined asWi;j;k;l ¼ ½1∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði − kÞ2 þ ðj − lÞ2

p
� if ði; jÞ ≠

ðk; lÞ or otherwiseWi;j;k;l ¼ 0. Equation (1) means that the pulse
output of a neuron modulates the activity of its neighbors via the
connection weight. Equation (2) shows that the pulse output of
Ni;j will be fed back to modulate its dynamic threshold. Based
on iterative computations, the SCM will produce a series of
binary pulse images by Eq. (3). Since pulse images contain
information of an input image, they can be used for feature
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generation. The entropy of pulse outputs has been utilized for
image feature extraction.10 Because the Tsallis entropy is suit-
able for measuring the information contained in the neurons,11 it
is computed for pulse images to extract the features from image
patches in I in this paper.

Let Ui;j½n� be the Lw × Lw similarity window centered at
(i; j) in Y½n�. The probabilities P1

i;j½n� and P0
i;j½n� of 1’s and

0’s in Ui;j½n� are computed as the ratio of the number of firing
pixels and that of nonfiring ones to the sum of pixels in Ui;j½n�,
respectively. The Tsallis entropy is calculated by HðUi;j½n�Þ ¼
ð1∕α − 1Þf1 −P

1
k¼0 ðPk

i;j½n�Þαg, where α is an adjustable
parameter chosen as α ¼ 2 according to Ref. 11. The Tsallis
entropy from the various iterations will form the feature vector
Vi;j of the image patch centered at (i; j) in I, i.e., Vi;j ¼
fHðUi;j½1�Þ; HðUi;j½2�Þ; · · · ; HðUi;j½nmax�Þg, wherenmax denotes
the maximum iteration times. For two rotated repetitive patterns in
I, theirpulse imagesgeneratedbytheSCMwillhave thesamenum-
ber of firing pixels at each iteration, thereby leading to the same
Tsallis entropy. It follows thatV is rotation-invariant. By introduc-
ingV into the comparison of image patches, the SCM-basedNLM
(SNLM) method can represent rotation-invariant self-similarities
of OCT images effectively. Accordingly, the similarity Si;j;p;q
between two pixels at ði; jÞ and (p; q) in I is defined as

Si;j;p;q ¼

8>>><
>>>:

�
1 −

���Vi;j−Vp;q

���2

2

d2

�1∕8

;
���Vi;j − Vp;q

���
2
≤ d

0;
���Vi;j − Vp;q

���
2
> d

;

(4)

where d denotes the decay parameter and k ·k2 is the Euclidean
norm. In Eq. (4), the pixel similarity is defined as a piecewise func-
tion in order to ensure good image restoration performance by dis-
missing highly dissimilar image patches from the similarity
computation.

Based on Si;j;p;q, the denoised intensity Di;j of the pixel at
(i; j) in I is defined as

Di;j ¼
P

ðp;qÞ∈Ωi;j
Si;j;p;qIp;qP

ðp;qÞ∈Ωi;j

Si;j;p;q
; (5)

where Ωi;j means the Ls × Ls search window centered at (i; j)
in I.

To verify the advantage of the SNLM method in determining
image self-similarities over the NLM method, simulations have
been done on the synthetical noise-free image [Fig. 1(a)] and the
corresponding speckled image [Fig. 1(d)]. The weight denoting
the similarity between the center pixel in the red box and other
pixels in each of the two images is computed for the two com-
pared methods using the 5 × 5 similarity window. The distribu-
tion of weights is shown in Figs. 1(b), 1(c), 1(e), and 1(f). It is
shown that the NLMmethod can find only the pixels with neigh-
borhoods similar to the center pixel up to translation. However,
the SNLM method can identify the pixels whose neighborhoods
are similar to that of the center pixel up to both translation and
rotation with good robustness to noise. The above comparison
indicates that the SNLM method can represent self-similarities
of speckled images more effectively than the NLM method.

To demonstrate the superiority of the SNLM method in
denoising OCT images, the NLM method and the modified

Fig. 1 (a) and (d) The simulated noise-free image and the speckle-corrupted image, respectively. (b) and
(e) The distribution of weights for the nonlocal means (NLM) method operating on (a) and (d), respec-
tively. (c) and (f) The distribution of weights for the spiking cortical model (SCM)-based NLM (SNLM)
method operating on (a) and (d), respectively.
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nonlinear complex diffusion filter (MNCDF)6 have been used
for comparisons. Experiments have been done on the three reti-
nal OCT images [Figs. 2(a), 3(a), and 3(e)] of size 924 × 614

pixels corresponding to 6 × 2 mm. These images have been
acquired using Cirrus HD-OCT system model 4000. In the
experiments, the parameters in the MNCDF are chosen as sug-
gested in Ref. 6. The SNLM method is insensitive to SCM
parameters, and thus, we fix f ¼ 0.8, g ¼ 0.7, h ¼ 80, and
nmax ¼ 16. Meanwhile, we have chosen the 7 × 7 similarity
window (Lw ¼ 7) and the 21 × 21 search window (Ls ¼ 21)
for the NLM and SNLMmethods while tuning the decay param-
eter in the two methods to obtain good restoration results.

The quantitative comparisons of restoration performance are
made among the three despeckling methods operating on
Fig. 2(a) acquired from the patient with macular hole.
Because the noise-free OCT image is unknown, four quality

metrics are chosen for evaluating restoration performance,
i.e., signal-to-noise ratio (SNR), average contrast-to-noise
ratio (CNR),1 average equivalent number of looks (ENL),1

and cross-correlation (XCOR).3 Both the SNR and CNR are
computed using log scale data, while the ENL and XCOR
are calculated using linear scale data. Table 1 lists the four met-
rics for the retinal OCT image, the images restored by the
MNCDF, the NLM method with the decay parameter chosen
as 70, and the SNLM method using d ¼ 0.35 − 0.60 with an
interval of 0.05. Here, the SNR is computed on the background
region (the box labeled 1). The CNR is averaged over the six
regions (boxes labeled 2 to 7). The ENL is averaged over the
three homogeneous regions (boxes labeled 2 to 4). We can
see from Table 1 that the trade-off between speckle attenuation
and similarity degradation is controlled by a single parameter d.
In general, the increasing d will lead to improved speckle

Fig. 2 (a) to (d) The retinal optical coherence tomography (OCT) image, the images despeckled by the
modified nonlinear complex diffusion filter (MNCDF), the NLM method, and the SNLM method, respec-
tively. (e) to (h) The enlarged views of the region of interest for the original image and images despeckled
by the MNCDF, the NLM method, and the SNLM method, respectively.

Fig. 3 (a) and (e) The retinal OCT images. (b) to (d) Despeckled results for the MNCDF, the NLM
method, and the SNLM method operating on (a), respectively. (f) to (h) Despeckled results for the
MNCDF, the NLM method, and the SNLM method operating on (e), respectively.
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reduction performance, but poorer detail preservation perfor-
mance. Based on the comprehensive consideration of four met-
rics, we have chosen d ¼ 0.45 for despeckling the OCT image.
Table 1 shows that the SNLM method using d ¼ 0.45 provides
significant SNR, CNR, and ENL improvements over other
methods. Compared with the original image, the SNLM method
improves the SNR by 16.5 dB, the CNR by 7.53 dB, and the
ENL by a factor of ∼60 times with a small similarity reduction
of 5.4%. Meanwhile, the proposed method outperforms the
NLM method by providing slightly higher XCOR as well as
SNR, CNR, and ENL improvements by 1.51 dB, 0.58 dB,
and 1.55 times, respectively.

Figure 2 shows the retinal OCT image, the restored images,
the enlarged views of the region of interest marked with
the white box, and the corresponding regions despeckled by
the three compared methods. We can see from Fig. 2 that the
MNCDF cannot deliver sufficient speckle suppression and
causes blurring of image details due to oversmoothing. The
NLM method can suppress speckle noise effectively, but it dam-
ages some important image details as indicated by three white
boxes in Fig. 2(g). By comparison, the SNLM method provides
effective speckle reduction in the background region dominated
by speckle noise as well as other regions where noise is super-
imposed on the signals. Furthermore, comparisons of the
enlarged views further demonstrate that the SNLM method
not only maintains the edge sharpness of the original signals
very well, but also significantly improves the contrast and
the visibility of image features, which will facilitate quantitative
analysis of OCT images. To demonstrate the generalization of

the SNLM method, Fig. 3 shows the restoration results for three
despeckling methods operating on other two OCT images.
Likewise, the visual comparisons show that the proposed
method performs significantly better than the two compared
methods in terms of speckle reduction and edge preservation.

As regards the computational efficiency of the SNLM
method, its mean runtime for three OCT images is ∼13 s, nearly
four times that of the NLM method, when implemented using
Visual C++6.0 on an Intel Dual Core 2.4-GHz processor with
4.0 GB of RAM.

In conclusion, the SNLMmethod provides a novel means for
reducing speckle noise in OCT images by exploring rotation-
invariant self-similarities of noisy images with good noise
immunity. Experimentally, it has been shown that the SNLM
method can restore OCT images effectively in terms of both
objective criteria (SNR, CNR, ENL, and XCOR) and subjective
human vision. We anticipate that this method can be utilized in a
wide range of medical fields, such as ophthalmology, dermatol-
ogy, gastroenterology, dentistry, and intraarterial imaging.

Acknowledgments
The authors are grateful to Professor Andrzej Zajac and Profes-
sor Jan Kasprzak from Medical University of Warsaw for pro-
viding retinal optical coherence tomography images. This work
is supported by the Project of the National 12th-Five Year
Research Program of China (Grant No. 2012BAI13B02).

References
1. D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical

coherence tomography images by use of a spatially adaptive wavelet
filter,” Opt. Lett. 29(24), 2878–2880 (2004).

2. J. Xu et al., “Wavelet domain compounding for speckle reduction in
optical coherence tomography,” J. Biomed. Opt. 18(9), 096002 (2013).

3. Z. Jian et al., “Speckle attenuation in optical coherence tomography by
curvelet shrinkage,” Opt. Lett. 34(10), 1516–1518 (2009).

4. J. Xu et al., “Speckle reduction of retinal optical coherence tomography
based on contourlet shrinkage,” Opt. Lett. 38(15), 2900–2903 (2013).

5. P. Puvanathasan and K. Bizheva, “Interval type-II fuzzy anisotropic dif-
fusion algorithm for speckle noise reduction in optical coherence
tomography images,” Opt. Express 17(2), 733–746 (2009).

6. R. Bernardes et al., “Improved adaptive complex diffusion despeckling
filter,” Opt. Express 18(23), 24048–24059 (2010).

7. A. Buades, B. Coll, and J. M. Morel, “A review of image denoising
algorithms, with a new one,” Multi. Model. Simul. 4(2), 490–530
(2005).

8. P. Coupé et al., “Nonlocal means-based speckle filtering for ultrasound
images,” IEEE Trans. Image Process. 18(10), 2221–2229 (2009).

9. L. Torres et al., “Speckle reduction in polarimetric SAR imagery with
stochastic distances and nonlocal means,” Pattern Recognit. 47(1), 141–
157 (2014).

10. K. Zhan, H. Zhang, and Y. Ma, “New spiking cortical model for invari-
ant texture retrieval and image processing,” IEEE Trans. Neural Netw.
20(12), 1980–1986 (2009).

11. R. Sneddon, “The Tsallis entropy of natural information,” Phys. A
386(1), 101–118 (2007).

Table 1 Image quality metrics.

Image SNR (dB) CNR (dB) ENL XCOR

Original NLM MNCDF 24.31 2.29 12.36 1

39.30 9.24 475.33 0.944

39.17 8.27 265.38 0.944

SNLM, d ¼ 0.35 40.85 9.03 430.68 0.947

SNLM, d ¼ 0.40 40.96 9.49 579.69 0.946

SNLM, d ¼ 0.45 40.81 9.82 738.68 0.946

SNLM, d ¼ 0.50 40.44 10.02 873.61 0.944

SNLM, d ¼ 0.55 40.07 10.13 970.42 0.943

SNLM, d ¼ 0.60 39.60 10.14 988.93 0.942

Note: SNR, signal-to-noise ratio; CNR, contrast-to-noise ratio; ENL,
equivalent number of looks; XCOR, cross-correlation; NLM, nonlocal
means; MNCDF, modified nonlinear complex diffusion filter; SNLM,
spiking cortical model–based NLM.

Journal of Biomedical Optics 066005-4 June 2014 • Vol. 19(6)

Zhang et al.: Spiking cortical model–based nonlocal means method. . .

http://dx.doi.org/10.1364/OL.29.002878
http://dx.doi.org/10.1117/1.JBO.18.9.096002
http://dx.doi.org/10.1364/OL.34.001516
http://dx.doi.org/10.1364/OL.38.002900
http://dx.doi.org/10.1364/OE.17.000733
http://dx.doi.org/10.1364/OE.18.024048
http://dx.doi.org/10.1137/040616024
http://dx.doi.org/10.1109/TIP.2009.2024064
http://dx.doi.org/10.1016/j.patcog.2013.04.001
http://dx.doi.org/10.1109/TNN.2009.2030585
http://dx.doi.org/10.1016/j.physa.2007.05.065

