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Abstract. Functional near infrared spectroscopy (fNIRS) is a noninvasive method to capture brain activities accord-
ing to the measurements of changes in both oxyhemoglobin and deoxyhemoglobin concentrations. However,
fNIRS recordings are the hemodynamic signals that come from the latent neural sources that are spatially and tem-
porally mixed across the brain. The purpose of this work is to extract the temporal and frequency characteristics as
well as the spatial activation patterns in the brains using independent component analysis (ICA). In this study, the
filtered fNIRS recordings were processed and the time-frequency and spatiotemporal domain independent com-
ponents (ICs) were identified by ICA. We found that multiple task-related components can be separated by ICA in
time-frequency domain, and distinct spatial patterns of brain activity can be derived from ICs that are well corre-
lated with the specific neural events, such as finger tapping tasks. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
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1 Introduction
Since the mid-1970s, functional near infrared spectroscopy
(fNIRS) has been developing a noninvasive technique to inves-
tigate brain activities under different stimuli by measuring the
absorption coefficients of the near-infrared light between 650
and 950 nm.1–9 Compared to other functional imaging modal-
ities, such as functional magnetic resonance imaging (fMRI)
and positron emission tomography (PET), fNIRS is able to
offer unsurpassed high temporal resolution and provide quanti-
tative information for both oxyhemoglobin and deoxyhemoglo-
bin, which is essential for revealing the rapid changes of
dynamic patterns in the brain including changes of blood oxy-
gen, blood volume, and blood flow.

Recently, independent component analysis (ICA) has been
recognized as a tool for evaluating the hidden spatiotemporal
sources from electroencephalography (EEG) and fMRI mea-
surements. ICA also shows its potential for analyzing the
time-frequency domain independent components (ICs) of
fNIRS recordings.10–16 However, the previous work based on
the time-frequency ICA is mainly confined to remove the
physiological noise or artifacts from the raw fNIRS signals.
The separation of brain activation patterns in time-frequency
domain is generally not addressed, which presents one of the
main challenges for understanding brain dynamics based on
fNIRS measurements. In addition, the spatiotemporal ICA
has been proposed for extracting the ICs from fNIRS sig-
nals.13,17 However, questions about identifying the most impor-
tant components and separating regions of interests (ROIs) from
brain networks are not resolved by most of the developed meth-
ods. Further, the event-related spectral amplitude, phase and

coherence perturbation based on ICA are not assessed by
most of the available fNIRS techniques, which makes it very
difficult for us to extract the ICs accounting for the largest por-
tions of brain oscillations and brain synchronization in fre-
quency domain.

In this study, we will further the popular ICA tool in fNIRS to
simultaneously analyze the spatiotemporal and time-frequency
domain ICs. In particular, we will combine run-by-run visuali-
zation in time-frequency domain and two-dimensional (2-D)
brain map visualization in space to show the extracted unmixed
components of brain activity. The developed fNIRS data analy-
sis methods based on ICAwill provide us a robust tool to capture
the complex brain dynamics and brain oscillations in spatiotem-
poral and time-frequency domains.

2 Materials and Methods

2.1 Theory Model for fNIRS

According to Beer’s law,1 the wavelength-dependent tissue opti-
cal density changes can be written in terms of the concentration
changes of the chromophores including HbO2 and HbR at time t
and wavelength λ,
�
ΔODðr;tÞjλ1
ΔODðr;tÞjλ2

�
¼DPFðrÞlðrÞ

�
ε1ðλ1Þ ε2ðλ1Þ
ε1ðλ2Þ ε2ðλ2Þ

��
ΔHbO2ðr;tÞ
ΔHbRðr;tÞ

�

(1)

in which ΔOD is the optical density change (unitless quantity) at
the position r, DPFðrÞ is the unitless differential path length
factor, lðrÞ (mm) is the distance between the source and the detec-
tor, εiðλÞ is the extinction coefficient of the i’th chromophore at
wavelength λ of laser sources, and ΔHbO2 and ΔHbR (μM) are
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the chromophore concentration change for oxy- and deoxyhemo-
globin, respectively. After multiplying the inverse matrix of the
extinction coefficients for both sides of Eq. (1), the time series
matrix for the changes of HbO2 and HbR is written as

�
ΔHbO2ðr; tÞ
ΔHbRðr; tÞ

�
¼

�
QHbO2

ðr; tÞ
QHbRðr; tÞ

�
∕½DPFðrÞlðrÞ� (2)

in whichQðr; tÞ vectors are the product of the inversion matrix of
the extinction coefficient and the optical density change vectors.
Based on these, the change of total hemoglobin concentration
ΔHbT (μM) is defined as the sum of ΔHbO2 and ΔHbR.

2.2 Independent Component Analysis

The ICA algorithm employed in this study is infomax ICA algo-
rithm,18 which separates mixed signals into maximally independent
sources by maximization of information transfer between them.19

2.2.1 Theoretical framework for spatiotemporal ICA

Since fNIRS recordings are from K channels with M dimen-
sional random time vector for each channel, the measurement
matrix for ΔHbO2ðr; tÞ is denoted by

ΔHbO2

¼

2
66664

ΔHbO2ðr1;t1Þ ΔHbO2ðr1;t2Þ : : : ΔHbO2ðr1;tMÞ
ΔHbO2ðr2;t1Þ ΔHbO2ðr2;t2Þ : : : ΔHbO2ðr2;tMÞ

..

. ..
. ..

. ..
.

ΔHbO2ðrK;t1Þ ΔHbO2ðrK;t2Þ : : : ΔHbO2ðrK;tMÞ

3
77775:

(3)

ΔHbO2 is then decomposed by ICA, estimating the optimal
inverse of the mixing matrix A and a set of source time courses
S. In terms of ICA estimation, ΔHbO2 is further written as18

ΔHbO2 ¼ AS (4)

in which A is the K-by-N mixing matrix, N is the number of
unmixed sources and S is the N-by-M time courses of different
ICs. Typically, we utilize K ≥ N so that A is of full rank. The
goal of ICA is to estimate an unmixing matrixWN×K such that X
is given by

X ¼ W½ΔHbO2ðrÞ� (5)

in which X is a good approximation of the “true” neural sources
S and the inversion of weighted matrix W will extract the brain
activity maps of the unmixed spatial sources. The unmixing
matrix W (i.e., the inversion of A) is the most important matrix
in ICA and the infomax ICA algorithm uses the gradient ascent
iteration algorithm to compute W by maximizing the entropy of
the output of a single-layer neural network. The resulting
updated equation for the algorithm to calculate W is

Step 1: Wð0Þ (e.g., random)
Step 2: Wðtþ 1Þ ¼ WðtÞ þ ηðtÞ½I − yðXÞXT �WðtÞ
Step 3: If not converged, go back to step 2

in which t represents a given approximation step, ηðtÞ is a gen-
eral function that specifies the sizes of the steps for the unmixing
matrix updates (usually an exponential function or a constant), I
is the identity matrix, T is the transposition operator, and yðXÞ ¼

gðXÞ and gðxÞ ¼ 1∕ð1þ e−xÞ is the nonlinearity in the neural
network if the right type of distribution X is not clear.
However, in the case of super-Gaussian distribution, yðXÞ is usu-
ally set to yðXÞ ¼ tan hðXÞ; and for the sub-Gaussian distribu-
tion, yðXÞ is usually set to yðXÞ ¼ X − tan hðXÞ.20 After
spatiotemporal ICA, we will get the time course and spatial acti-
vation patterns of each IC identified from ΔHbO2 measure-
ments. Likewise, we can extend the ICA method to analyze
the independent sources for the change of HbR and HbT.

2.2.2 Theoretical framework for time-frequency ICA

Extensive investigations in EEG have validated that stimuli
induce not only time-locked responses but also phase- and fre-
quency-related brain oscillatory activities quantified by power
spectrum, event-related spectral perturbation (ERSP) and inter-
trial coherence (ITC) for different ICs or channels.19 To
assess event-related spectral amplitude, phase and coherence
perturbations for the time courses of ICs identified from
fNIRS recordings, we will measure the baseline, epoch-mean
power spectrum, and two event-related time–frequency param-
eters: (1) ERSP, which represents the mean event-related
changes in the power spectrum for a specific IC; (2) ITC,
which is a frequency-domain measure of the partial or exact syn-
chronization of activity at a particular latency and frequency to a
set of experimental events to which fNIRS data runs are time
locked for different ICs. To determine the oscillatory activity
with fNIRS recordings, the complex exponential form of the
sinusoidal wavelet [short time discrete Fourier transform (ST-
DFT)] was used to analyze the power spectrum and the phase
spectral properties. So in terms of ST-DFT, the time-frequency
analysis for the spectral estimation Fðf; tÞ from the measure-
ments x with window function Win19 is written as

Fðf; tÞ ¼
Z

xðuÞWinðu − tÞ exp½−j2πfðu − tÞ�du (6)

in which the measurement x is the element of the time course vec-
tor for a single IC obtained from Eq. (5), t is time and f is the
frequency. The window function Win is commonly a Hann win-
dow or a Gaussian window bell centered around zero and detailed
description about this operation can be found in MATLAB pack-
age, Fðf; tÞ is calculated over a sliding time window with variable
u, the power spectrum is defined as the square of Fðf; tÞ, and we
generally adopt the log deviations from epoch-mean power at a
specific frequency as our displayed power spectrum.19

Quantification of the ERSP requires calculating the power
spectrum over a sliding time window and then averaging across
data runs. Typically, for n-run measurements, if Fkðf; tÞ is the
spectral estimation of run k at frequency f and time t, ERSP is
written as

ERSPðf; tÞ ¼ 1

n

Xn
k¼1

jFkðf; tÞj2: (7)

It is noted that to visualize power changes across the fre-
quency range, we will subtract the mean baseline log power
spectrum from each spectral estimate, producing the baseline-
normalized ERSP.19

ITC is defined as

ITCðf; tÞ ¼ 1

n

����
Xn
k¼1

Fkðf; tÞ
jFkðf; tÞj

����: (8)
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Fig. 1 The data reviews for filtered HbO2 measurements (a), HbR measurements (b) and HbT measurements (c). Channel configurations in two-dimen-
sion (2-D) (left column) and three-dimension (3-D) (right column) (d). Here, four-run fNIRS recordings (separated by dashed lines) are plotted at 48
channel sites (channel names on the left) and the onset time for right finger tapping is marked as “target.”
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Fig. 2 The spatiotemporal analysis of independent components (ICs) that contribute the most to the HbO2 measurements (a), HbR measurements (b),
and HbT measurements (c). Brain activity maps in 2-D are also provided and the cortical activity was mostly seen in the left primary motor cortex and
supplementary motor area (SMA) (see detailed images in Fig. 3). The black thick lines indicate the data envelope (i.e., minimum and maximum of all
channels at every time point) and the colored lines show the components of different chromophores.
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2.3 Experimental Systems and Data Acquisition

The fNIRS tests are implemented with a block design for a right
finger tapping task. The experiment is performed using a 48-
channel FOIRE-3000 (Shimadzu OMM) system, which has
16 sources, 16 detectors, and 48 channels. In this system,
two continuous wave lights at wavelengths 780 and 856 nm
are emitted at each source fiber. In the case of block design
for right finger tapping tasks, the onset time for the first trigger

was at 20 s and then followed by a 20-s period of activation
alternated with a 40-s period of rest. This was repeated four
times for the subject. The onset time for the last trigger was
at 260 s and the duration was 20 s, followed by a 20-s period
of rest. As such, the total recording time was 300 s. During the
task period, the subject was instructed to perform a finger flex-
ion and extension action repeatedly. Data segmentation, which
is also known as epoching in signal processing, is utilized to

Fig. 3 The most significant ICs calculated from HbO2 measurements (a), HbR measurements (b), and HbT measurements (c). The composite ICs for
each specific chromophore will generate its ROIs for right finger tapping tasks. (d) The fMRI image for one subject who performed right finger tapping
tasks. The cortical activity was mostly seen in the left primary motor cortex and SMA and the fNIRS findings correlated well with the fMRI features. LM:
left primary motor cortex; LM1: left primary motor cortex 1; LM2: left primary motor cortex 2; LM3: left primary motor cortex 3; SMA: supplementary
motor area; RM: right primary motor cortex; P: parietal cortex; and V: visual cortex.
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chop up the continuous fNIRS data into small time periods. The
general way to do this is to extract segments surrounding the
event codes from the experiments, e.g., from −25 s prior to the
event onset until 35 s after the event code in this study. The origi-
nal photon density datasets could be downloaded freely from
http://bisp.kaist.ac.kr/NIRS-SPM/Sample_data.20 The converted
HbO2, HbR, and HbT change measurements (DPF ¼ 4,
sampling rate ¼ 7.7 Hz) are filtered, segmented, and displayed
in Figs. 1(a)–1(c), respectively. The configurations of 48 chan-
nels located on the scalp are also provided in Fig. 1(d). It is seen
from Fig. 1 that significantly higher increases in ΔHbT and
ΔHbO2 in the motor cortex were observed during the stimulus
processing for the finger tapping tasks in comparison with those
from rest states. However, this is not the case for ΔHbR, in which
we found a significant decrease during the stimulus processing
when compared with the measurement from baselines.

3 Results and Discussion

3.1 Spatiotemporal Analysis of fNIRS Signals Using
ICA

For all the four-run fNIRS recordings (five onsets with period of
300 s) of right finger tapping tasks, the 2-D brain activity maps
and associated IC time courses were first identified by ICA from

the filtered HbO2, HbR and HbT change measurements. To
quantify the contribution of ICs to HbO2, we plot in Fig. 2(a)
the components that contribute the most to it in terms of the most
HbO2 variance of all the 48 ICs, where we observed ICs 1–4, 6,
7, and 14 are the most significant ones. However, we found that
only ICs 1, 4, 6, and 14 correlate well with right finger tapping
tasks since ICs 2, 3, and 7 basically identify noise or unrelated
neural events. The brain activity maps of ICs 1, 4, 6, and 14 are
the identified ROIs for HbO2. We also capture the components
that contribute the most to the filtered HbR and HbT measure-
ments, which are provided in Figs. 2(b) and 2(c), respectively.

In addition, the ROIs identified by ICA from different chro-
mophores are provided in Fig. 3, where we found that the ROIs
for right finger tapping tasks are mainly located in the left pri-
mary motor cortex and supplementary motor area. However, we
did observe identified brain activities located in the parietal cor-
tex for HbO2 or in the right motor cortex for HbR. These find-
ings show good agreement with neural physiologies for a right
finger tapping task.3,9 We also reconstructed the brain images for
a different subject using fMRI data with the right finger tapping
tasks (fMRI datasets can be downloaded from http://bisp.kaist
.ac.kr/NIRS-SPM).21 We found the ROIs of fNIRS correlate
very well with fMRI findings while the recordings are acquired
from different subjects, which validate that ICA is able to

Fig. 4 Run by run visualization in temporal domain for the HbO2 measurements (a), HbR measurements (b) and HbT measurements (c) processed with
ICA (left column of the images) and without ICA (right column of the images). The images on the left column show the correct onset time (0 s) and
stimulus duration (0 to 20 s). Runs were imaged in (bottom-to-top) order of their occurrence during the experiment for an arbitrary selected channel 41.
The bottom curve of each figure shows the run-averaged time series of fNIRS recordings for each chromophore.
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effectively capture the spatial maps of brain activity using fNIRS
recordings. Further work that combines the IC time courses and
NIRS-SPM9 is being done to achieve high resolution and 3-D
ICs imaging.

To display the hemodynamic response distributions proc-
essed by ICA, runs were imaged in (bottom-to-top) order of
their occurrence during the experiment. Figure 4 shows their dis-
tribution in an arbitrary selected channel 41 after we remove the
unrelated ICs including artifacts or physiological noise. The bot-
tom curve of each figure in Fig. 4 shows the run-averaged time
series of fNIRS recordings for each chromophore. Compared
with the datasets processed without ICA shown on the right
column of Fig. 4, the new datasets on the left column show
correct run duration (0 to 20 s) and accurate onset time (0 s),
which validates that the ICA has the capabilities for extracting
the correct components during stimulus processing in temporal
domain.

3.2 Time-Frequency Analysis of fNIRS Signals Using
ICA

It is more interesting to look at time-frequency decompositions
of component activations than of separate channel activity since
ICs may directly index the activity of one brain fNIRS source,
whereas channel activities acquire hemodynamic signals from

different areas of the brain. We demonstrate how one can use
a time-frequency domain ICA to potentially aid in the under-
standing of the neuromotor process underlying repetitive finger
tapping. In Figs. 5(a)–5(c), we plot the ICs that account for the
largest portions of brain oscillations with frequencies at 3.5 and
1.2 Hz for HbO2, HbR, and HbT, respectively. The ICs in fre-
quency domain are sorted and selected in terms of their percent-
age contributions of total data power. Our studies have shown
that synchronized delta frequency (0 to 3 Hz) oscillations are
involved in a simple finger tapping task with fNIRS measure-
ments. In particular, the brain oscillatory activities around
1.7∕2.6∕3.5 Hz are very significant compared those from
other frequency bands. Interestingly, it was observed from
the right column of Fig. 5 that the ROIs for right finger tapping
tasks around 3.5 Hz are found mainly in the left primary motor
cortex. However, this is not the case for the brain activation pat-
terns around 1.2 Hz, in which ROIs are not related with the left
motor cortex, as displayed on the left column of Fig. 5. It is
observed from Fig. 5 that the most significant brain oscillatory
activity was mainly found in the left primary motor cortex,
which is well correlated with the right finger tapping tasks.

ERSP is able to capture the mean changes in spectral power
at each time during the run and at each frequency. In terms of the
ERSP distributions shown in Fig. 6, representative IC4 (the
brain activity from the fourth IC is well correlated with right

Fig. 5 The ICs accounting for the largest portions of powers of brain oscillatory activities with frequencies at 1.2 Hz (images on the left column)
and 3.5 Hz (images on the right column) for HbO2 measurements (a), HbR measurements (b) and HbT measurements (c). The brain oscillations
at 3.5 Hz correlated very well with the right finger tapping tasks for all of the three chromophores. LM: left primary motor cortex and SMA: supple-
mentary motor area.
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Fig. 6 Event-related spectral perturbation (ERSP) plots the mean changes in spectral power at each time during the run and at each frequency. The IC4
(the fourth IC) of HbO2 shows increased ERSP during the stimulus processing with frequencies at 0.7∕1.7∕2.6∕3.5 Hz, whereas IC11 of HbR first shows
the decreased ERSP centered at the onset time and then later increased ERSP till the end of the duration with frequencies at 0.7∕1.7∕2.6∕3.5 Hz. The
brain activities for IC4 and IC11 become partially synchronized around 3.5 Hz during the stimulus period of 0 to 15 s. However, the brain activities for
IC4 become partially synchronized around 1.7 Hz during the stimulus period of 15 to 30 s, whereas IC11 from HbR becomes partially synchronized
around 1.7 Hz before the onset of trigger (−15 to 0 s) and around 1.7∕2.6 Hz during the stimulus processing. The left curve in the ERSP panel shows the
baseline mean power spectrum, whereas the lower curve of the ERSP panel shows the ERSP envelope [low (in blue) and high (in green) mean decibel
values, relative to baseline, at each time in the run]. The left curve in intertrial coherence (ITC) panel shows the distributions of mean ITC at different
frequencies, whereas the bottom curve in ITC panel shows the run-averaged time course of IC4 or IC11 in micormolar. (a) The computed ERSP and
ICTC for IC4 from HbO2 measurements and (b) the computed ERSP and ITC for IC11 from HbR measurements.
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finger tapping tasks) from HbO2 shows increased ERSP near
delta frequency band (1 to 3 Hz) during the stimulus processing
(5 to 30 s), whereas representative IC11 from HbR shows a
power decrease in the time range (−5 to 10 s), then followed
by an increase during the stimulus processing (10 to 30 s).
According to the distributions of ITCs plotted in Fig. 6 the
brain activities from both HbO2 and HbR components appear
to become partially synchronized around 3.5 Hz during the
stimuli period from 0 to 15 ms after the onset of finger tapping
tasks. However, brain activities for IC4 from HbO2 become par-
tially synchronized around 1.7 Hz during the stimulus period
(15 to 30 s) while IC11 from HbR becomes partially synchron-
ized around 1.7 Hz before the onset of trigger (−15 to 0 s) and
around 1.7∕2.6 Hz during the stimulus processing.

3.3 Comparisons of Different ICA Methods for fNIRS
Signal Analysis

The MATLAB tool packages have over 20 available ICA algo-
rithms.22 We calculated and compared the recovered ICs using
four popular ICA methods including infomax, jade, sobi, and
acsobiro. The calculated results using infomax based on HbT
measurements are shown in Fig. 7(a), whereas Figs. 7(b)–7(d)
show the most important ICs computed from methods 2 to 4. By
estimating the spatiotemporal profiles of ICs, we found the
recovered ICs using infomax are in good agreement with
those from methods 2 to 4. The brain activity areas identified
by methods 1 to 4 were mainly found in the left motor cortex,
which correlate well with the neurophysiology mechanism for a
right finger tapping task. Consequently, there are no significant
differences for the reconstructed ICs from the four methods
though minor calculation errors among them do exist. It seems
that infomax, jade, and acsobiro capture similar distribution of
HbT components compared with that from the sobi method. If
we compare the recovered ICs 2 and 5 from jade with similar ICs
1 and 5 from infomax, ICs 3 and 1 from sobi, and ICs 1 and 5
from acsobiro, we would find jade identifies more features
than the other methods. In addition, we also observed that info-
max is able to extract the spatial activity maps with high contrast
though with strong background noise. The main advantages of
infomax algorithms based on the minimization of mutual infor-
mation are its ability to adapt to variations in the environment
and the fact that it is robust if the right type of distribution is
provided (super- or sub-Gaussian).20

Both principal component analysis (PCA) and ICA could be
used to extract independent neural sources or reduce the mea-
surements into a smaller set of components. There are signifi-
cant differences between the two blind source separation
methods: (1) PCA uses the first and second moments of the mea-
surements, hence relying heavily on Gaussian features while
ICA exploits inherently non-Gaussian features of the data
and utilizes higher order moments; (2) PCA maximizes the vari-
ance of the projected data along orthogonal direction while ICA
finds the vectors onto which the projections are independent;
and (3) in PCA, the first principle component accounts for as
much of the variability in the data as possible, and each succes-
sive orthogonal component accounts for as much of the residual
variability as possible while with ICA, we must first choose the
number of sources to compute. Both ICA and PCA could be
applied to the same problem and the results would be quite dif-
ferent. For example, in “cocktail party effect,”19,20 ICA is able to
distinguish the voice of each independent speaker from the lin-
ear combination of the voices while PCA fails to do that.

Importantly, recent work13 on fNIRS shows that ICA has signifi-
cant advantages on source separations in comparison with PCA.

It is noted that five conditions should be satisfied to perform
ICA and PCA: the source signals must be statistically indepen-
dent; the number of source signals must be equal to the number
of mixed observed signals and mixtures must be linearly inde-
pendent from each other; the model must be noise free; data
must be centered; and the source signals must not have
Gaussian probability density functions. Further investigations
on ICA should include ICA for nonlinear mixing process, ICA
for source signals that are noisy, ICA for a number of source

Fig. 7 The spatiotemporal analysis of ICs that contribute the most to the
HbT measurements using infomax (a), jade (b), sobi (c), and acsobiro
(d) ICA methods. The black thick lines indicate the data envelope
(i.e., minimum and maximum of all channels at every time point)
and the colored lines show the components of HbT. No significant
differences for the calculated ICs among the four methods were
observed.
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signals greater than the number of observables and blind source
separation techniques based on temporal dependencies.20

In conclusion, we introduce ICA for fNIRS brain signal
processing. The significance of this work is that ICA is able
to identify sites of cortical activations and characterize the
hemodynamic task responses in time-frequency domain for
the whole brain with the event-related components. With further
application to more complex tasks, ICA will likely reveal brain
dynamics not identified with conventional fNIRS analysis
methods.
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