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1 Introduction

The radiative transfer equation (RTE) describes the propagation
of light in diffusive media like biological tissue, but despite its
use in many fields of physics for the modeling of waves in scat-
tering media, analytical solutions are available only for simple
cases. This integro-partial differential equation is solved by
numerical methods like Monte Carlo simulations,’ the discrete
ordinate method,>* or finite element methods* or is approxi-
mated by simpler models like diffusion theory.>S

The most widely used approximation for the modeling of
light propagation in typical geometries for experiments in bio-
medical optics is the diffusion equation (DE), for which solu-
tions are available, e.g., for semi-infinite geometries, slabs,
and cylinders, both homogeneous and layered.”'° However,
investigations based on the DE are limited by the approxima-
tions of the theory. In the time domain especially, early photons
have to be disregarded as the validity of the DT is limited to
photons that are scattered many times. Results can be improved
by models based on the more exact RTE solutions. A possible
approach to solve the RTE for the semi-infinite geometry is the
use of scaled Monte Carlo simulations,''™* leading to good
results but depending on high computational effort in calcula-
tion time and memory use.

Martelli et al. used a solution for an infinite medium pre-
sented by Paasschens'* to derive a heuristic analytical solution
for the time-dependent RTE for the case of isotropic scattering
and a isotropic point source in a semi-infinite medium.*!

Recently, approaches for solving the RTE were presented in
steady-state for the infinite!®!” and the semi-infinite geometry.®
These solutions can be transformed to the frequency-domain
and by using the Fourier transform one obtains solutions for
the time-dependent RTE. But the Green’s function of the
steady-state RTE is not square integrable. Therefore, the
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resulting signal can be strongly oscillating, causing difficulties
for the use of this approach in the inverse problem based on
fitting procedures.

However, a Green’s function with an analytical dependence
on the time variable was recently presented for the infinite space
and anisotropic scattering,'® leading to more stable results as it is
not necessary anymore to transform the results from the fre-
quency-domain. This new approach starts from the RTE depen-
dent on distance, time, and angle. The expansion in Legendre
polynomials leads to a linear and time invariant system that
gives a time-dependent Green’s function by applying a one-
sided Laplace transform. The resulting set of only linear equa-
tions can be solved by a matrix exponential giving the time-de-
pendent solution as long as an inverse Laplace transform can be
carried out. The matrix exponential can be computed advanta-
geously by an eigenvalue decomposition to obtain the results for
all time values in one step.

This study follows the approach of Martelli et al. but uses the
accurate solution for the time-dependent RTE recently presented
in Ref. 19 in order to obtain a Green’s function that is based on a
solution for anisotropical scattering and can be used for mis-
matched refractive indices, as exist in most measurement situa-
tions®* > and especially for noncontact approaches.>* The
model is compared to Monte Carlo simulations to test its accu-
racy and to show the improvements compared to the diffusion
model. It is used for the inverse problem of deriving the optical
parameters of Monte Carlo simulations by a nonlinear fitting
routine. The resulting errors are compared with the ones pro-
duced by the well-known diffusion theory.

2 Theory

The derivation starts from the Py -solution of the RTE for the
time-dependent fluence rate caused by a isotropic point source
in an infinite medium. The solution is given by the coefficient of
zeroth order of a Legendre series for the radiance'’
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where the coefficient of the Legendre series Iy (k, t) is given by
Eq. (21) with /=0 in Ref. 19 and jy(x) = sin(x)/x is the
spherical Bessel function of the first kind. The expansion coef-
ficients can be calculated by an eigenvalue decomposition of the
matrix A defined in Eq. (14) in Ref. 19, which can be done
easily in Matlab for example.

The solution for the fluence in the infinite case is shown to
agree with results of Monte Carlo simulations, 19 with the relative
differences being only dependent on the number of photons used
in the latter ones. Furthermore, the solution conforms the
expectations to perform well also for situations with high
absorption where the DT breaks down. Additionally, it has
the advantage to be applicable for anisotropic scattering. The
anisotropy factor g of the often used Henyey-Greenstein
model,” for instance, is contained in the matrix A."

The component J, of the flux J=J, -t in the infinite
medium is given by the first order moment of the Legendre
series

L i) =50 [T nkoineak, @)

T

with I, (k, t) also given by Eq. (21) in Ref. 19 but for [ = 1, the
spherical Bessel function of the first kind j, (x) = sin(x)/x* —
cos(x)/x and where j is the imaginary unit.

This study does not use the numerical implementation sug-
gested by Liemert and Kienle'” that employs a finite Hankel
transformation. Instead, the integrations in Eqs. (1) and (2)
are solved by a Gauss quadrature leading to a greater numerical
stability of the solution.

The main problem in the description of a semi-infinite geom-
etry is the representation of the boundary. In the time domain
there is no solution available for exact boundaries. Thus,
approximated boundary conditions have to be used.
Following the choice of Martelli et al.'® for the heuristic boun-
dary condition, the extrapolated boundary condition (EBC),
using the method of images can be applied to derive the semi-
infinite boundary as it is done with the diffusion equation. >
For an assumed isotropic source at a depth z = z,, a negative
image source is introduced outside the medium so that at a dis-
tance z = —z, the fluence rate composed by the fluence rates for
an infinite medium from each source, vanishes at that extrapo-
lated boundary. This leads to the following expressions for the
fluence rate in the semi-infinite medium with p = (x> + y?)!/2
as the source-detector separation:

D(p, 2, 1) = Pipe(Jr —17[, 1) = Djpe([r — 17|, 1),

v =1 =/p* + (2 - 20)° ©)

r—r| = \/,o2 + (2420 +22.)%

In transport theory, the dependence on the absorption coef-
ficient is given by the factor exp(—pu,ct/n). To obtain the same
dependence in DT and transport theory, the isotropic source is
assumed to be at a depth of z, = 1/(u/).® In the case of a differ-
ence in refractive indices at the boundary, the Fresnel reflections
can be accounted for by defining the extrapolated distance as
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Zz, = 2DA. The diffusion coefficient D is assumed to
be D = 1/(3u)).

The time-resolved reflectance at the boundary is often calcu-
lated by using Fick’s law to obtain a representation of the flux
through the boundary. This approximation is not necessary here,
since the exact flux is given by Eq. (2). The z -component in the
negative z -direction is

Jz,inf(p»z’ t) = _‘]r,inf(r7 t) ' (Z - Z,)/I’, (4)

where r = (p? + z2)!/2 and 7' is the position of the source that is
either zj or zjme = —2¢ — 22, for the positive source and the neg-
ative image source, respectively. The flux at the boundary z = 0
leaving the medium can then be calculated by

Joi(P:2=0,0) =T jng (e =17],0,0) = i ([t —17[,0,1). (5)

Following the argumentation of Haskell et al.?® and Kienle
and Patterson,”’ the reflectance can then be given as a combi-
nation of fluence and flux as

1-r l—r;
R(p,t):T¢®Si(p,Z:0,t)+T]Jzisi(p,Z:0,t), ©)

where the coefficients r; and r; are defined as in Ref. 26. For the
comparison shown in the results section, the Green’s function
based on the Paasschens solution presented by Martelli et al.'
was modified in the same way. That means the choice of z, =
2DA and the same combination of fluence and flux in the cal-
culation of the reflectance as given in Eq. (6) was used, for
which the flux was calculated by Fick’s law as presented in

Ref. 15.

3 Results

Results of the Green’s function for the semi-infinite medium
derived here are compared with Monte Carlo simulations for
validation, since the latter converge against an exact solution
of the RTE for an infinitely large number of photons.

The source in the simulations is represented by a pencil beam
of light and the Henyey-Greenstein phase function is used. The
simulations were done for an absorption free medium, taking the
dependence on attenuation into account by multiplication with
exp(—p,ct/n) as shown by Kienle and Patterson.'! This leads to
better statistics, especially for the cases of high absorption.
Photon packages with a time of flight longer than 3 ns were dis-
carded for performance reasons as they were out of the interest-
ing detection interval. In the following, the reduced scattering
coefficient is assumed to be u!=1mm™!. The refractive
index of the surrounding medium and the semi-infinite scatter-
ing medium are n = 1.0 and n = 1.4, respectively, as this is
close to the value of biological tissues. Every photon package
exiting the scattering medium was binned with a radial resolu-
tion of 0.1 mm and temporal bin size of 2 ps. The simulations
were carried out with 2 - 10° photons.

Figure 1(a) and 1(b) shows the obtained results for the reflec-
tance from a semi-infinite medium for the order of N =7,
Eq. (6), compared with Monte Carlo simulations (MC) for an
anisotropically scattering medium. The derived reflectance
agrees much better with the MC results than the DT (also
shown), especially for early times where DT is inaccurate
since its validity is limited to photons that are scattered many
times. Since the Monte Carlo simulations and both analytical
solutions use the same dependence on absorption, the ratios
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Fig. 1 Comparison between DT, the Green'’s function derived here (Hy) and MC for an anisotropically scattering medium with g/ =1 mm~', g = 0.9,

and g, = 0.1 mm~' (a) and (c) or g, = 1 mm~!

(b) and (d). The figures (a) and (b) show the time-resolved reflectance at three source-detector sep-

arations p = 3.95/5.95/8.95 mm, (c) and (d) show the ratio between the MC results and each analytical solution for a source-detector separation of

p =3.95 mm and p = 5.95 mm, respectively.

shown in Fig. 1(c) and 1(d) are the same for all values of the
absorption coefficient. The differences between the hybrid sol-
ution and MC are below 5% for all times shortly after the peak.
Due to the ballistic peak, there are numerical instabilities in the
solution of the infinite case at early times. Therefore, the
Green’s function is multiplied with Heaviside functions ©(z —
[r — r*|/c) for both sources, respectively, suppressing the signal
at small times and limiting the rising edge when the source-
detector separation becomes comparable to the distance to
the image source. It has to be noted that the ratios in Fig. 1(c)
and 1(d) are zero for all times where the Monte Carlo simula-
tions are zero and, therefore, do not show the violation of cau-
sality as DT predicts non-null values for short times as can
clearly be seen in Fig. 1(a) and 1(b).

The situation for media with different anisotropy factors is
shown in Fig. 2, where Fig. 2(a) and 2(b) shows the time-
resolved reflectance for g =0.5 and g = 0.8, respectively.
The Green’s function presented by Martelli et al. based on
the Paaschens solution and modified as described above is also
included for comparison. As expected for a solution of only the
isotropic case, it performs better for g = 0.5 than for g = 0.8. In
both cases it performs better than DT for short times but gets
worse for later times because of the mismatched refractive indi-
ces as already stated in Ref. 15. The hybrid solution presented in
this study again models early time values best. As can be seen in
Fig. 2(c) and 2(d), the difference in the Monte Carlo results is
again below 5% at all times shortly after the maximum even for
the small source-detector separation of 3.95 mm.

In the following, the derived solution is used to retrieve the
optical parameters of time-resolved reflectance curves from
Monte Carlo simulations. A Levenberg-Marquardt routine is
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used to fit the analytical solution to the simulation data. The
weights o; used in the fitting are defined by the standard
deviation of the Monte Carlo simulation data that is®

R(ﬂk, Lis J )
ooty eg) = L),
ki

@)

Table 1 shows the results of the nonlinear fitting of Monte
Carlo data in order to retrieve u, and p; of the medium. The
routine used the Levenberg-Marquardt algorithm provided in
the Matlab Optimization toolbox and fitted both optical param-
eters u! and p,, as well as an amplitude factor K. So the residual
to be minimized is

N !
K-R(p,t;,pu,p's) —MC(p,1;)]2
%222[ (. tir Har ') w.0))” g
i=1

o(p.t;)

The region on the curve used for the fitting was chosen to be
from 90% of the maximum behind the peak to 0.1% of the maxi-
mum. The fitting region is chosen only on the falling slope of the
curve since the DT does not calculate the rising part correctly
and is invalid for too early photons. The second limit is chosen
on the grounds that experiments based on time correlated single
photon counting typically can detect count values over three
orders of magnitude. Even if the hybrid model based on the
RTE performs better for early times as seen in the comparisons
of the forward calculations with MC, the results for fitting just
the falling part are better also for this model. Furthermore, the
values of the reduced y2 as a measure of the quality of the fit*®
are better for the fitting range after the peak for both solutions.
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Fig. 2 Comparison between DT, the Green’s function derived here (Hy), and the one based on the Paaschens solution (Paa) and MC. Compared for
ul=1mm™", u, =0.1 mm~'. On the left side for g = 0.5, on the right for g = 0.8. The figures (a) and (b) show the time-resolved reflectance at three
source-detector separations p = 3.95/5.95/8.95 mm, (c) and (d) show the ratio between the MC results and the analytical solutions, at the source-

detector separation of p = 3.95 mm.

The relative errors for the optical coefficients determined by
the fit are calculated by

/ /
Hsic —H s
/

Hs

Ha fit — Ha

a

e(pa) = and e(uy) = ) ©))

and are given for different source-detector separations p in
Table 1 as percentages.

The relative errors in the optical parameters retrieved by fit-
ting with the hybrid RTE solution (Hy) given in Table 1 are con-
sistently smaller than the ones obtained with DT. Especially for
small distances, and when both the scattering and absorption
coefficient are considered together the hybrid model yields bet-
ter results. The errors in the determined absorption are smaller
than 5% even for the case of a high absorption of g, = 1lmm™!
and decrease for larger source-detector separations. For all cases
also the values of the reduced y? are better for the hybrid sol-
ution, indicating a better modeling of the data. That the DT per-
forms especially well for large distances in the case of
U, = 0.1mm™! originates in the choice of the fitting range. As
stated above the ratios in Fig. 1(c) and 1(d) are the same for all
absorption values as the simulations and all analytical solutions
have the same dependence on absorption. The different results
shown in Table 1 are caused by the different time intervals of the
fitting range, since the end of the interval where the intensity
value is at 0.1% of the maximum shifts for different values
of p,. In this particular case, the interval on the falling slope
of the simulated data seems to cover time values favorable
for the DT so that the errors of different approximations cancel
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each other for that set of parameters. The values of the reduced
2, however, are worse than for the hybrid solution here as well.

Possible reasons for the residual discrepancy in the fit with
the hybrid RTE solution are, for instance, that the radial or tem-
poral bin sizes of the simulations were not taken into account.
All photons are binned at detection with a radial bin size of
0.1 mm and 2 ps for the time-axis, while the analytical solutions
use the central value of the bins. This effect can be stronger in
real measurements where the size of the detection fiber is mostly
larger than 0.1 mm. But most important the use of the extrapo-
lated boundary condition and the method of image sources are
only an approximation of the exact boundary condition consid-
ering Fresnel’s formulas.

Similar results as in Table 1 were also obtained for the simu-
lated data with different anisotropy factors g = 0.8 and g = 0.5.

4 Discussion

In this study, a time-dependent Green’s function for the fluence
in an infinite geometry has been used to derive an approximate
solution for the time-resolved reflectance from a semi-infinite
medium using the extrapolated boundary condition. This ana-
Iytical solution avoids the problem of long computation times
linked to numerical RTE solutions, which is especially impor-
tant for the inverse problem, i.e., retrieving the optical properties
of the scattering medium. Even though there now already exist
validated RTE solutions for the semi-infinite case in the steady
state domain, there is no solution known in the time domain. The
presented hybrid Green’s function has the benefit of avoiding
Fourier transforms of frequency-domain solutions, since this
procedure can produce strong oscillations depending on the
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Table 1 Relative error in the absorption coefficient ¢, and the reduced scattering coefficient &, for different source-detector separations (SDS) after
fitting to MC simulations with u/ =1 mm~", g=0.9, n = 1.4, and varying absorption.

4 =0.001 mm™! 1y =0.01 mm™!
DT Hy DT Hy
SDS/mm es/% eq/% es/% eq/% /% €q/% /% eq/%
3.95 42.8 109.3 13.8 14.6 47 .4 18.1 12.8 2.5
4.95 32.2 14.8 4.5 2.5 32.1 1.8 4.2 0.1
5.95 13.5 17.8 0.8 4.0 15.3 3.1 1.0 0.6
6.55 9.0 13.7 0.3 2.9 10.7 2.6 0.1 0.5
7.95 4.5 8.7 1.1 2.3 5.8 1.7 0.9 0.4
8.95 2.7 4.8 1.6 0.2 3.2 0.9 1.9 0.1
11.95 0.7 1.8 1.8 1.1 1.2 0.5 1.6 0.0
g =0.1 mm™! Hg =1 mm™!
DT Hy DT Hy
SDS/mm e/ % eq/% e/% eq/% /% eq/% e/ % eq/%
3.95 38.0 3.8 53 1.3 79.0 10.7 34.2 4.6
4.95 22.8 0.6 0.2 0.7 107.7 14.3 28.8 4.0
5.95 12.9 0.0 1.1 0.3 104.4 13.1 24.5 3.4
6.55 7.5 0.3 2.4 04 102.0 12.5 23.1 3.3
7.95 1.6 0.7 3.2 04 82.9 8.6 17.5 2.3
8.95 0.4 0.7 2.7 0.1 77.6 6.9 15.8 2.0
11.95 4.4 1.1 2.4 0.1 64.8 2.8 14.1 2.4

parameters chosen and, therefore, introduces problems for solv-
ing the inverse problem by a fitting routine.

The comparisons with Monte Carlo simulations show that
the derived solution based on an exact RTE solution of the infin-
ite medium performs well also for semi-infinite geometries. The
deviations depend on the construction of the boundary condition
and how the reflectance is computed. Whereas the solution pre-
sented by Martelli et al.'” is a solution for isotropic scattering
and works well for matched refractive indices, the hybrid sol-
ution presented here performs well for mismatched boundaries
and anisotropical scattering as existent in biological tissues.

In the fitting of Monte Carlo simulations with typical optical
and geometrical parameters, the errors in the retrieved optical
parameters are smaller for the presented hybrid solution than
with DT. The fitting was done only for time values after the
peak of the simulated data leading to better results and smaller
values of the reduced y>. When keeping the peak in the fitting
region to allow more stable fitting, especially for a low number
of points as for high absorption, the presented solution still
yields better results than DT. For real measurements the convo-
lution with an instrument response function will inevitably
spread parts of the signal before the peak over the time axis mak-
ing the hybrid solution even more valuable for avoiding the vio-
lation of causality in the DT. The parameters of the simulations
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were varied in the absorption and different source-detector sep-
arations are shown, what relates to different values of the
reduced scattering coefficient for a fixed distance.'! The results
for different values of the anisotropy factor are similar to the
ones shown.
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