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Abstract. Optical tomography is a medical imaging technique based on light propagation in the near infrared (NIR)
part of the spectrum. We present a new way of predicting the short-pulsed NIR light propagation using a time-
dependent two-dimensional-global radiative transfer equation in an absorbing and strongly anisotropically scatter-
ing medium. A cell-vertex finite-volumemethod is proposed for the discretization of the spatial domain. The closure
relation based on the exponential scheme and linear interpolations was applied for the first time in the context of
time-dependent radiative heat transfer problems. Details are given about the application of the original method on
unstructured triangular meshes. The angular space (4πSr) is uniformly subdivided into discrete directions and a
finite-differences discretization of the time domain is used. Numerical simulations for media with physical proper-
ties analogous to healthy and metastatic human liver subjected to a collimated short-pulsed NIR light are presented
and discussed. As expected, discrepancies between the two kinds of tissues were found. In particular, the level
of light flux was found to be weaker (inside the medium and at boundaries) in the healthy medium than in the
metastatic one. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.7.075007]
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1 Introduction
The need to diagnose cancer tumors early, efficiently, and non-
invasively has become a major public health issue. To this end,
optical tomography (OT) is used to retrieve the thermo-optical
properties of biological tissues with a radiative transfer model
for visible or near infrared (NIR) light.1–39 It consists in illumi-
nating a tissue sample with a short-pulsed NIR light and then
analyzing the information gathered to detect the possible
presence of cancerous cells. Biological tissues scatter strongly,
as cells are commonly made of many different structures (such
as cores and mitochondria). Moreover, they absorb the infrared
light because of their content in hemoglobin, melanin and water.
Light can penetrate the tissues up to a depth of a few centimeters
in a spectral range that is considered to be the therapeutic win-
dow (located between 600 and 900 nm), where the absorption of
tissues is minimal.29

In literature on the subject, diffusion approximation has com-
monly been used to model radiative transfer in biological tissues
because of its mathematical simplicity and the availability of a
vast amount of fast computational solvers. For example, in the
paper by Schweiger et al.40 a finite-element solution was used to
solve the diffusion equation. The field of validity of the diffusion
approximation was found to be relatively restricted because
it is a low-order approximation which is only valid in the
diffusion limit wherein scattering dominates absorption.32,33

To overcome this problem, the time-dependent radiative transfer

equation (TRTE) on short time scales,32,33 or its Fourier space
counterpart the frequency-domain radiative transfer equation
(FD-RTE)12,20,23,27 can be used. In real applications, it should
be noted that the time-dependent techniques (compared to the
continuous and frequential techniques) offer the advantages
of providing more informal and structural informations and a
very high level of sensitivity. Thus, it seems more interesting
to use the TRTE for modeling. For example, Jacques13 used
a Monte-Carlo method to simulate the propagation of femtose-
cond and picosecond laser pulses within turbid tissues. Clearly,
sufficiently accurate solution methods are required for OTwhile
solving the TRTE or the FD-RTE in geometrically complex
media and in the presence of anisotropically scattering it
remains a challenging task.7,29 The Monte-Carlo statistical
approach can be used to solve radiative transfer in biological
tissues. This method is popular because it is accurate and simple
to implement. However, it is highly expensive in terms of
memory and computational time. Many other different solution
methods have been developed to solve the radiative transfer
equation in the spatial domain, including differential solution
methods such as the Finite-Differences method (FDM), the
finite-element method (FEM) and the finite-volume method
(FVM). All these require the evaluation of the radiance at the
cell faces of the control volumes that define the computational
grid. Hence, the radiance at the cell faces has to be related to the
radiance at the grid nodes (closure relations), which constitute
the unknown factors of the discretized RTE. The STEP scheme,
commonly referred to as upwind scheme in computation fluid
dynamics (CFD), is only first-order accurate, and causes
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so-called false scattering (or numerical diffusion), whenever gra-
dients of the radiance appear in directions not aligned with the
direction of propagation of radiation.41,42 False scattering can be
sometimes reduced using grid refinement but this leads to a
logical increase in computational time. Unlike the STEP
scheme, the diamond scheme, which is the counterpart of the
central difference scheme in CFD, is formally second-order
accurate, but is not bounded. This means that physically unrea-
listic overshoots or undershoots, such as negative radiances,
may appear in the numerical solution. Other more accurate
schemes, such as the positive and exponential schemes, have
been also proposed. The exponential scheme relies on the inte-
gral form of the RTE and was expected to be more precise than
the STEP and diamond schemes. Other schemes still exist and
we refer to Refs. 43–45 for more details. To our knowledge, the
more precise spatial discretization schemes mentioned above
have only been applied for steady state radiative heat transfer
problems until now. We reviewed some studies on the computa-
tional methods for biological tissue optics. In the paper by
Arridge and Schweiger3 photon transport models, such as the
TRTE and the time-dependent diffusion equation, were
described and methods for obtaining analytical and numerical
solutions (FDM and FEM) for the most commonly used ones
were reviewed but not detailed. In the paper by Klose and
Hielscher4 an upwind (STEP) FDM was used to spatially
solve the 2-D TRTE. The time discretization of the equation
was carried out using a forward Euler differencing scheme.
The article by Elaloufi et al.7 presents a study of the propagation
of light pulses through participating media with anisotropic
scattering based on the one-dimensional FD-RTE. A standard
discrete-ordinate (SN) angular discretization was used to obtain
a system of linear differential equations (one equation for each
discrete direction used in the quadrature) and then a matrix
eigenproblem approach was used to solve the system of
differential equations. In papers by Rasmussen et al.21 coupled
fluorescent RTE equations in frequency space were used to
model excitation and emission light transport. The coupled
equations were solved using the Attila transport software. Typi-
cally, the SN angular discretization was used and the equations
were spatially solved using a robust linear discontinuous (LD)
finite-element spatial differencing scheme. The method was
applied to unstructured tetrahedral grids. In particular, the
authors comparatively evaluated STEP differencing and linear
discontinuous (LD) spatial differencing (used in the Attila pack-
age) on a phantom. They observed that the STEP differencing is
a simple and inefficient scheme previously used in OT. Recently,
a cell-center FVM with a second-order spatial differencing (dia-
mond) scheme was used to solve the FD-RTE as presented in
papers by Kim et al.28,31 The computational method was applied
to three-dimensional (3-D) computational domains discretized
with an unstructured tetrahedral mesh. Moreover, the works
cited above sometimes go beyond solving the direct problem
because they also implement the inverse problem in biological
tissues. Difficulties related to false scattering (closure relations)
in the numerical solution of the TRTE or the FD-RTE have been
the subject of little discussion or study. The STEP and diamond
schemes lead to errors, which are often quite serious. Our review
of literature in this field shows they have been widely applied in
OT, and are in fact sometimes still in use.

The objectives of the study covered in this paper are
two-fold. The first objective was to present a cell-vertex
(conservative) FVM on unstructured triangular meshes with

an efficient closure relation based on an exponential scheme,
which has yet to be used in time-dependent radiative heat
transfer problems. The following section presents the problem
statement and gives details of the computational method. The
second objective was to apply the new computational method
and then analyze and discuss the results for media with physical
properties analog to healthy and metastatic human liver sub-
jected to a collimated short-pulsed NIR light (850 nm). This
is the subject of the third section. The last section reports our
conclusions and suggests further developments for this work.

2 Numerical Treatment

2.1 Problem Statement

Biological tissue is represented by a nongray participating
medium with homogeneous optical properties (the wavelength
is omitted in the notations for sake of simplicity). The effective
medium is illuminated with a collimated short-pulsed light at
normal incidence. Thus, a part of the pulsed collimated light
beam leaves the medium without having been deviated, while
the other fraction is scattered in multiple directions. The radi-
ance inside the medium is made up of a ψcðs;Ω; tÞ collimated
component, which is the attenuated intensity of the collimated
beam, as well as the ψcðs;Ω; tÞ diffuse component, which is the
in-scattered radiation into Ω direction.46 The intensity of
the incoming pulse is ϒðtÞ, given at any location point sw on
the bounding surface that is illuminated. Then, the ψcðs;Ω; tÞ
collimated radiation is governed by Bouguer-Beer-Lambert
extinction law. From Appendix A, it follows that

ψcðs;Ω; tÞ ¼ ϒ
�
t −

nΔs

c

�
expð−μtΔsÞδðΩ −ΩcÞ

for t ≥
nΔs

c
and ψcðs;Ω; tÞ ¼ 0 for t <

nΔs

c
;

(1)

with δ the Dirac delta function, Ωc the direction of the colli-
mated radiation and, Δs the distance between points sw and
s. The ψðs;Ω; tÞ diffuse radiation is solution of the TRTE
with an additional radiative source term resulting from radiation
scattered away from the collimated beam17,18,41,46

Scðs;Ω; tÞ ¼ μspðΩc → ΩÞϒ
�
t −

nΔs

c

�
expð−μtΔsÞ: (2)

The transient distribution ϕðs; tÞ and Qinðs; tÞ can be calcu-
lated respectively, as

ϕðs;tÞ¼
Z
4π
ψðs;Ω;tÞþψcðs;Ω; tÞdΩ

¼
Z
4π
ψðs;Ω;tÞdΩþϒ

�
t−

nΔs

c

�
expð−μtΔsÞ

Qinðs;tÞ¼
Z
n·Ω<0

ψðs;Ω; tÞjn ·ΩjdΩ
�
þπϒ

�
t−

nΔs

c

�

×expð−μtΔsÞ if n ·Ωc < 0

�
; (3)

where the contribution of ϒ is valid only for t ≥ nΔs
c .
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2.2 Discretization of the Time, Angular,
and Spatial Domains

To solve the TRTE numerically on short time scales (typically
going from 1 fs to 1 ps), the time domain was discretized with a
Δt constant step such that tk ¼ kΔt; k ∈ f1; : : : ; Ntg where
Nt was the necessary number of time steps to reach steady
state (with a given precision). The angular space (4πSr) was
uniformly subdivided into Ωðm;nÞ discrete directions, ðm;nÞ∈
f1; : : : ;Nθg×f1; : : : ;Nφg ∈ f1; :::; Nθg × f1; :::; Nφg. Unstruc-
tured grids are generally seen to be superior to structured
grids because they appear to be better at modeling arbitrarily
shaped geometries. To work with 2-D irregular geometries,
the computational spatial domain was divided into three-node
triangular elements using unstructured meshes. In practice, we
used a 2-D triangular mesh that generates three standard files
giving: 1) the numbering and the coordinates of all the mesh’s
nodes; 2) the numbering of triangles; 3) the numbering of ele-
ments (two nodes) at the boundary. The main advantage of this
technique is the use of an automatic 2-D triangular mesh gen-
erator that would refine a zone of interest, for example the zone
around an inclusion that would be present in the medium. In this
work, a cell-vertex formulation was adopted. It consists in build-
ing control volumes around each node of the mesh and to com-
pute the solution at the nodes of the mesh (nodes of triangles).
The polygonal control volumes connected to each node were
built by joining the centroids of the elements to the midpoints
of the corresponding sides (Fig. 1). Control volumes surround-
ing the nodes at the boundaries were built as illustrated in.
Ref. 47 All dependent variables were stored at the nodes of
the grid. The surface of the control volume related to node P
was subdivided into Nf surface elements. For a surface element
f, if was the integration-point located at the center of surface
element, Af was its surface area and, nf was the inward unit
surface normal. It should be noted that the if integration points
of panels fðf ¼ 1; 2; : : : ; 12Þ are defined only from the coor-
dinates of the vertices of triangles of the mesh (Fig. 2). It is
obvious that control volumes for a cell-vertex scheme applied
to an unstructured triangular mesh are more difficult to imple-
ment. However, in our view, this should be more precise than
cell-center schemes (for example) where the control volumes
are defined by triangles and the unknowns are stored in the
center of control volumes.28,31 Indeed, in our case the number
of faces in a control volume was higher (Fig. 1) because it is
equal to three for the cell-centre schemes.

2.3 Discretization of the TRTE

In general, the FVM gives a good accuracy computational time
ratio (that is important for both forward and inverse problems).
Moreover, unlike the FDM and the FEM, the FVM presents the
advantage of being conservative. The total conservation of
energy is ensured for each discrete component of the radiance,
as for the radiative heat flux. Thus, the FVM ensures, for each
component of the radiance, an exact radiative balance that
increases the accuracy of the spatial discretization scheme. In
addition, it was shown that with a sufficiently precise closure
relation, this conservative method limits the problems of false
scattering.41 In this context, we developed a modified FVM
to simulate steady state radiative heat transfer problems.47

The FVM implemented is a cell-vertex scheme (the solution
is computed at the nodes of the mesh). The method was first
applied to participating (nonscattering) gray media. In this

Fig. 1 Control volume related to an interior node.

Fig. 2 Schematic of the problem. (a) Simplification of the geometry.
(b) Problem geometry. (c) Gaussian pulse.
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section, we shall show that the method can be extended to time-
dependent radiative heat transfer problems and for a scattering
medium where the 2-D computational domain is discretized
with unstructured triangular meshes.

2.3.1 Explicit euler scheme and FVM applied to the TRTE

The integration of the TRTE over VP (Fig. 1) and into a ΔΩðm;nÞ

discrete solid angle centered around a Ωðm;nÞ discrete direction
yields17,18,41

Z
VP

Z
ΔΩðm;nÞ

n
c
∂ψðs;Ω; tÞ

∂t
dΩdV þ

Z
VP

Z
ΔΩðm;nÞ

Ω

· ∇ψðs;Ω; tÞdΩdV þ
Z
VP

Z
ΔΩðm;nÞ

μtψðs;Ω; tÞdΩdV

¼
Z
VP

Z
ΔΩðm;nÞ

Sðs;Ω; tÞdΩdV þ μs

Z
VP

Z
ΔΩðm;nÞ

Z
Ω 0¼4π

× pðΩ 0 → ΩÞ ψðs;Ω 0; tÞdΩ 0dΩdV; (4)

where ψðs;Ω; tÞ is the radiance defined at each point s of
the medium, at time t and in a specific Ω direction of propaga-
tion of radiation. The source term is defined by Sðs;Ω; tÞ ¼
n2μaψb½Tðs; tÞ� þ Scðs;Ω; tÞ. For a medium that is nonemitting,
Sðs;Ω; tÞ is reduced to Scðs;Ω; tÞ. Inspection of Eq. (4) shows
that, for isotropic scattering, the intensity field for ψ is readily
determined from standard methods, after replacing n2μaψb½T�
by S. In the case of anisotropic scattering the emission term
S becomes direction-dependent, which may necessitate slight
changes to the solution procedure.

By applying the divergence theorem to the second term of the
left member of Eq. (4), it follows that

Z
VP

Z
ΔΩðm;nÞ

Ω · ∇ψðs;Ω; tÞdΩdV

¼
Z
ΓP

Z
ΔΩðm;nÞ

ψðs;Ω; tÞðΩ · nextÞdΩdS:
(5)

Let ψk;ðm;nÞ
if

be an approximation of the radiance at time tk, in
the if integration-point and in the Ωðm;nÞ discrete direction.
Then, the relation Eq. (5) is approximated by

XNf

f¼1

ψk;ðm;nÞ
if

AfΔ
ðm;nÞ
f with Δðm;nÞ

f ¼
Z
ΔΩðm;nÞ

Ω · nfdΩ:

(6)

It should be noted that Δðm;nÞ
f is an integral that depends only

on the orientation of surface element f for the direction consid-
ered. This quantity is calculated in an exact way.47 We assume
that (ψ , T) and properties (μa, μs) are constant inside a suffi-
ciently small VP control volume (taking only one value at node
P) and inside ΔΩðm;nÞ. If the explicit Euler (finite-difference)
scheme is used for the time discretization of the TRTE, then
the complete discretization of the Eq. (4) yields

n
c

8<
:
ψkþ1;ðm;nÞ
P −ψk;ðm;nÞ

P

Δt

9=
;ΔΩðm;nÞVP

þ
XNf

f¼1

ψk;ðm;nÞ
if

AfΔ
ðm;nÞ
f þμtPψ

k;ðm;nÞ
P ΔΩðm;nÞVP

¼
�
Sk;ðm;nÞ
P þμsP

XNθ

m 0¼1

XNφ

n 0¼1

P̃ðm 0;n 0Þ→ðm;nÞψk;ðm 0;n 0Þ
P ΔΩðm 0;n 0Þ

�

×ΔΩðm;nÞVP

ðm;nÞ∈ f1; : : : ;Nθg×f1; : : : ;Nφg; (7)

where Sk;ðm;nÞ
P ¼ n2μaPψb½Tk

P� þ Sk;ðm;nÞ
c;P with, Sk;ðm;nÞ

c;P ¼
μsPp̃ðmc;ncÞ→ðm;nÞψcðP;Ωc;tkÞ · p̃ðm 0;n0Þ→ðm;nÞ represents the aver-
age part of the scattered energy from the control solid angle
ΔΩðm 0;n 0Þ toward the control solid angle ΔΩðm;nÞ and is given
by48,49

p̃ðm 0;n 0Þ→ðm;nÞ ¼
R
ΔΩðm;nÞ

R
ΔΩðm 0 ;n 0Þ pðΩ 0 → ΩÞdΩ 0dΩ
ΔΩðm 0;n 0ÞΔΩðm;nÞ

ðm; nÞ ∈ f1; : : : ; Nθg × f1; : : : ; Nφg and

ðm 0; n 0Þ ∈ f1; : : : ; Nθg × f1; : : : ; Nφg: (8)

2.3.2 Spatial discretization of the transport
term of the radiance

To solve the set of Eq. (7), closure relations between the ψk;ðm;nÞ
if

integration-point values and the nodal values of the radiance are
required. The directional nature of radiative transfer needed to
be taken into account in order to establish the closure relations.
Thus, for a specific direction of propagation of radiation, only
the nodal values located upstream from the integration-point had
to be considered. In our previous work,47 original closure rela-
tions based on the exponential scheme and linear interpolations
were developed to solve the steady state RTE. This technique
was applied to a nonscattering gray medium with the same
kind of mesh considered here for the computational spatial
domain. We also tried the STEP and diamond schemes and
opted to use the exponential scheme. The STEP scheme causes
false diffusion that is a linear function of the spatial discretiza-
tion. In case the grid point separation is sufficiently small (i.e.,
large mesh refinement), the impact of false diffusion becomes
very small. The diamond scheme may yield oscillatory solu-
tions. The exponential scheme relies on the integral form of
the RTE and was expected to be more accurate than the
other two schemes. It is however more expensive in terms of
computational time. The results obtained verify the computa-
tional method and show the effectiveness of our closure rela-
tions, in particular for graded index media.50 Our aim here
was to generalize our closure relations to a scattering medium
for the TRTE (the time has now to be taken into account) and in
the case of an unstructured triangular mesh. It should be noted
that the efficiency of the FVM in predicting radiative heat trans-
fer in acute forward anisotropic scattering media illuminated
with collimated radiation was recently shown in Ref. 49. In
the same way as presented in Ref. 47, a locally rigorous
one-dimensional (1-D) integration of the TRTE along the optical
path (uf, if) has to be used. Here, uf and if are assumed to be on
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the same optical path of Ω direction with uf located upstream
from if and Δsf is the distance between points uf and if. From
Appendix A, it follows

ψðif;Ω; tÞ ¼ ψðuf;Ω; tÞ expð−μtΔsf Þ þ
Z

if

uf

�
Sðs;Ω; tÞ

þ μs

Z
Ω 0¼4π

pðΩ 0 → ΩÞψðs;Ω 0; tÞdΩ 0
�

× exp½−μtðif − sÞ�ds: (9)

It should be noted that it is difficult to evaluate the integral of
Eq. (9) because ψðs;Ω 0; tÞ for s ∈ ðuf; ifÞ is not known a
priori. Thus, the following approximation can be used,
ψðs;Ω 0; tÞ ≈ ψðuf;Ω 0; tÞs ∈ ðuf; ifÞ.

To compact the equations, the following notations are intro-
duced where a is the scattering albedo coefficient

Dðm;nÞ
uf ¼ AfΔ

ðm;nÞ
f expð−μtΔsf Þ;

Eðm;nÞ
uf ¼ AfΔ

ðm;nÞ
f a½1 − expð−μtΔsf Þ�

Ck;ðm;nÞ
uf ¼ AfΔ

ðm;nÞ
f

Z
if

uf

Sk;ðm;nÞðsÞ exp½−μtðif − sÞ�ds:
(10)

Combining Eqs. (9) and (10) in Eq. (6) gives:

XNf

f¼1

ψk;ðm;nÞ
if

AfΔ
ðm;nÞ
f ¼

XNf

f¼1

�
ψk;ðm;nÞ
uf Dðm;nÞ

uf þ Ck;ðm;nÞ
uf

þ
�XNθ

m 0¼1

XNφ

n 0¼1

p̃ðm 0;n 0Þ→ðm;nÞψk;ðm 0;n 0Þ
uf ΔΩðm 0;n 0Þ

�
Eðm;nÞ
uf

�
:

(11)

The projections and linear interpolations presented in Ref. 47
were expected to improve the closure relations and the accuracy
of the results. Also, they were used (and generalized)
in this study, to link ψk;ðm;nÞ

uf defined at the uf point with the
nodal values of the radiance (see Appendix B). Combining
Eqs. (7) and (11), the discretized TRTE gives the final
expression

ψkþ1;ðm;nÞ
P ¼ ψk;ðm;nÞ

P þΨ
�
Sk;ðm;nÞ
P − μtPψ

k;ðm;nÞ
P

þ μsP
XNθ

m 0¼1

XNφ

n 0¼1

p̃ðm 0;n 0Þ→ðm;nÞψk;ðm 0;n 0Þ
P ΔΩðm 0;n 0Þ

�

−Λ
XNf

f¼1

�
ψk;ðm;nÞ
uf Dðm;nÞ

uf þCk;ðm;nÞ
uf þ

�XNθ

m 0¼1

XNφ

n 0¼1

× p̃ðm 0;n 0Þ→ðm;nÞψk;ðm 0;n 0Þ
uf ΔΩðm 0;n 0Þ

�
Eðm;nÞ
uf

�

ðm;nÞ ∈ f1; : : : ;Nθg× f1; : : : ;Nφg; (12)

with Ψ ¼ cΔt∕n and Λ ¼ Ψ∕ΔΩðm;nÞVP. It has to be empha-
sized that the set of equations in Eq. (12) can only be solved

for one given ðm; nÞ direction. To evaluate double sums, it
is necessary to know, as preliminary at time tk, the specific

intensities ψk;ðm 0;n 0Þ
P and ψk;ðm 0;n 0Þ

uf in all discrete directions
ðm 0; n 0Þ ∈ f1; : : : ; Nθg × f1; : : : ; Nφg. In our case, these spe-

cific intensities were changed by ψ ðk−1Þ;ðm 0;n 0Þ
P and ψ ðk−1Þ;ðm 0;n 0Þ

uf ,
since the values are known at time tk−1. The convergence criter-
ion to obtain a steady state solution was related to the values of
the incoming radiative light fluxes calculated at the boundaries.
Our computational method is designed to takes into account
both opaque walls (with either purely specular or diffuse reflec-
tion), and semi-transparent walls (with reflecting or transmitting
surface properties).

To the best of our knowledge, this is the first time that a cell-
vertex FVM has been applied to solve the TRTE with the above
closure relations established for unstructured triangular meshes.
In order to test the efficiency (accuracy and stability) of our com-
putational method, we examined benchmark cases (available in
other works on similar topics) and found a good level of compli-
ance. All the corresponding results are not presented here for the
sake of conciseness. Only one benchmark is given inAppendixD
to illustrate the performance of our computational method. All
calculations presented were performed on an Intel Xeon
E5540,2.56GHzwith12GoRAMandusing the intelFORTRAN
compiler.

3 Results

3.1 Model of Human Liver Subjected to Collimated
Short-Pulsed NIR Light with Gaussian Profile

Experimentally, the tissue sample could be illuminated with a
short-pulsed NIR light. As the sample is 3-D but the calculations
are 2-D, we have to provide a z-axis-independent fluence. This
could be achieved by illuminating the sample with an extended
line source along the z-axis [Fig. 2(a)]. Along the x-axis the
light beam is collimated. In this study, the spatialwidth of the inci-
dent pulse is 1 mm on the surface of the sample, centered on the
middle position [Fig. 2(b)]. A small section or tissue slice of the
liver is represented by a rectangular cavity of dimension
(1 mm × 1 cm) (1 mm according to the (Ox)-axis) [Fig. 2(b)]
with transparent boundaries. It should be noted that a medium,
subjected to a collimated short-pulsed NIR radiation, can be
treated as cold (T ¼ 0 K) because the blackbody emission in-
tensity is always much smaller than the incident laser intensity;
and is thus negligible. Then, the cavity studied is surrounded
by a cold external medium (T ¼ 0 K). Each tissue is assumed
to be nonemitting and its optical properties at 850 nm (NIR radia-
tion) are taken from Table 1.

It should be noted that it was not necessary to take a thickness
larger than 1 mm since the optical penetration depth of the two
tissuesareof theorderofamillimeter fromTable1.The twotissues
are assumed to have the same refractive index, namely n ¼ 1.4,
which is slightly higher than that of water.52 It should be noted
that the absorption and scattering coefficients are both lower
for the metastatic liver. In two cases, the medium is optically
thick (τ ¼ 20.5 for healthy liver and τ ¼ 10.86 for metastatic
liver) and the regime of multiple scattering has to be considered
(ls ≪ L < la). The Henyey-Greenstein phase function is used to
account for the anisotropic nature of scattering by themediumand
is expressed as: 41
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pHGðΘÞ ¼
1

4π

1 − g2

½1þ g2 − 2g cos Θ�3∕2 : (13)

To solve theTRTE, the initial and boundary conditions need to
be specified. Initially, at time t ¼ 0, there is no light (or photons) in
the medium before light impingement. At subsequent times, the
westernwall of themedium is illuminatedwith a collimated short-
pulsed beam at normal incidence (directed perpendicularly to the
western wall) [Fig. 2(b)]. The incident radiation is assumed to be
Gaussianwith a peak intensity I0 at time t ¼ tc and pulsewidth tp
[Fig. 2(c)]. The intensity profile for a Gaussian beam, which is
commonly used, can be expressed as24,46

ϒðtÞ ¼ I0 exp

�
−4 ln 2

�
t − tc
tp

�
2
�
; 0 < t < 2tc and

ϒðtÞ ¼ 0; t ≥ 2 tc: (14)

The selected pulse width tp was 0.1 ps, tc∕tp ¼ 1.5, and
I0 ¼ 10 Wm−2. The intensity is typical of a collimated beam
from a pulsed LED with a peak power of 1 mW shining on
an area of about 1 cm2. Our simulations were carried out with
a structured triangular mesh composed of (50 × 250) nodes
(50 according to the (Ox)-axis). To correctly take into account
the first scattering events in the tissue (ls ¼ 0.049 mm for healthy
liver and ls ¼ 0.092 mm for metastatic liver), the grid was refined
near to the west face of the medium, according to the (Ox)-axis
and a geometric progression with a ratio equal to 0.95. Thus, the
first node of the grid was 0.009 mm from the west face of the
medium. The angular space was subdivided into Nθ × Nφ ¼
64 × 32 control solid angles. The Courant-Friedrich-Levy
(CFL) condition6,17 was satisfied in our calculations, Δt ≤ n

cΔsmin
where Δsmin is the size of the smallest cell. In other words, the
traveling distance of a ray of light between two consecutive time
steps does not exceed the size of the smallest cell. In our case,
Δsmin ¼ 0.009 mm and n

cΔsmin ¼ 0.041 ps. Thus, Δt was cho-
sen to be 0.01 ps and the Crank Nicolson schemewas used for the
time discretization of the TRTE (see Appendix C). Furthermore,
sensitivity studies have been carried out on time, spatial and
angular discretizations and the values chosen show that the grid
influence remained weak. Under the conditions specified above,
the computational time required by our program to carry out 600
time steps was about 115 h.

3.2 Results and Discussion

The numerical results obtained for the Gaussian pulse reveal
several important points. The radiative flux reaching the differ-
ent boundaries is shown in Figs. 3 and 4 and radiative flux inside

the biological medium (metastatic and healthy) is depicted in
Figs. 5 and 6. As expected, discrepancies appeared between
the two kinds of tissues appear. At each time step, the light
flux was weaker (inside the medium and at boundaries) in
the healthy medium than in the metastatic one. As explained
previously, this comes from the fact that absorption coefficient
is greater in healthy tissue (0.1 mm−1 against 0.06 mm−1 for
metastatic liver). It appears that radiative flux undergoes an
important extinction during its propagation in the tissue: at x ¼
0.2 mm of the sample, the beam has lost more than 45% of its
power (Fig. 6). Moreover, it is simple to check that the pulse
peak propagates at Dx

Dt ¼ 0.2−0.1
1.13−0.66 10

9 ≈ 2.1108, which is of the
order of the phase velocity c∕n (assumed identical to group
velocity for a constant refractive index n ¼ 1.4). Just before

Table 1 Optical properties of healthy and metastatic human liver
tissue (before thermal coagulation) at 850 nm.51

Healthy liver Metastatic liver

Absorption coefficient μa (mm−1) 0.1 0.06

Scattering coefficient μs (mm−1) 20.4 10.8

Asymmetry factor g 0.955 0.902

Optical penetration depth (mm) 1.8 2.3

Fig. 3 Evolution of dimensionless incoming radiative flux in the middle
position of the west face (reflectance).

Fig. 4 Dimensionless incoming radiative flux on the East face at differ-
ent times (transmittance). (a) Healthy tissue. (b) Metastatic tissue.
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leaving the medium, levels of light flux impinging on the
east face are represented. The dimensionless power density
was about 2.5 10−10 for healthy tissue and about 6 10−6 for
metastatic tissue (Fig. 4). This discrepancy is helpful when
comparing the respective weight of absorption and scattering
processes. Biological media are considered to be strongly scat-
tering. Here, the absorption coefficient, scattering coefficient
(twice that of metastatic liver) and asymmetry factor of a healthy
liver were all found to be stronger than those of a metastatic
liver. If scattering prevailed over absorption, then as scattering
is favored forward, incoming light flux on the east side should

be greater for healthy liver compared to metastatic liver. Figure 4
shows the contrary, meaning that absorption has to prevail over
scattering. Moreover, as the levels of light flux impinging on the
east face are extremely low, this means that for medical imaging
applications, transmitted light flux could hardly be measurable.
Therefore, it seems more relevant to focus on the backscattered
light flux (Fig. 3). For metastatic tissue, dimensionless backscat-
tered light flux is about 2 10−3, just a little higher than that
obtained for healthy tissues. The absolute difference varies
between 0 and 0.8 10−3. Therefore to efficiently discriminate
between both kinds of media would require further information,

Fig. 5 Evolution of dimensionless radiative flux (diffuse component) along the (Ox) axis in the medium. (a) Healthy tissue. (b) Metastatic tissue.
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such as the state of polarization or the implementation of more
refined models, to obtain qualitative differences in the behavior
of tissues with respect to a short-pulsed NIR light.

Finally, diffuse radiative flux gives a luminous halo around
the collimated light, that increases versus time (Fig. 5). Whereas
the spatial width of the incident pulse is 1 mm on the west
surface of the sample, diffuse radiative flux is extended on
approximately 2 mm on the east surface of the sample (Fig. 4).

4 Conclusion
This paper presents a new solution method for the TRTE in 2-D
absorbing an strongly anisotropically scattering medium sub-
jected to a collimated short-pulsed NIR light. A cell-vertex
FVM was proposed for the discretization of the spatial domain.
The closure relation based on the exponential scheme and linear
interpolations was applied for the first time in the context of
time-dependent radiative heat transfer problems. Details were
given about the application of the original method on unstruc-
tured triangular meshes. A finite-differences discretization of the
time domain was used. The developed code was tested with
some benchmark cases (through comparisons with existing pub-
lished solutions) and was found to be robust, stable and accurate.

Numerical simulations for media with physical properties
analog to healthy and metastatic human liver subjected to a col-
limated short-pulsed NIR light were presented and discussed.
The propagation speed of light pulse inside the medium is repro-
duced correctly. As expected, discrepancies between the two
kinds of tissues were observed. Indeed, at each time step
the level of light flux was found to be weaker (inside the
medium and at boundaries) in the healthy medium than in
the metastatic one. Moreover, our results indicate that the domi-
nant mechanism for extinction of light in liver was absorption,

Fig. 7 Projection of integration points if (f ¼ 1, 2, 3) in a Ω specific
direction and a ðP1; P2; P3Þ triangle of reference.

Fig. 6 Evolution of dimensionless radiative flux (diffuse component) in
the middle position of the medium along the (Ox) axis.

Fig. 8 Effect of anisotropic scattering on the transient transmittance and reflectance. (a) Transmittance—Present study. (b) Transmittance8. (c) Reflec-
tance—Present study. (d) Reflectance8
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which suggests the possibility of tumoral diagnostics based on
recomposition of the absorption field.

In OT, it is very useful to have efficient numerical schemes
and closures relations to reduce false scattering in the TRTE
model. In our future work, we will aim to provide relevant
comparative analyses between different schemes, such as step,
diamond, mean flux, exponential, cell-center formulation and
others found in articles on this subject. To evaluate in an objective
way the efficiency of the present computational method in terms
of precision and computational time, it would be interesting to
carry out comparisons with other existing radiative transfer
methods, including Monte-Carlo methods on benchmark cases
in the same configurations (angular, spatial and temporal grids).

To develop an efficient tool for cancer tumoral diagnostic it is
clear from our results that this work could usefully be extended
to include other properties of light beams to discriminate
between healthy and metastatic tissues. For example, our work
was limited to unpolarized light, but laser sources can also be
polarized (circularly or linearly). Thus, states of polarization for
the specific radiance (based on the vector radiative transfer equa-
tion) together with specular reflections may result in a number of
interesting effects and could be implemented by using the
Stokes formalism.53–55

Other improvements can also be made to the thermo-optical
model of the biological medium. Only homogeneous media
with constant optical properties were considered here and for
the metastatic case: this implies the presence of a developed
tumor that fills the whole simulation domain. With the aim of
achieving early diagnosis of the presence of tumors, a more rele-
vant approachwouldbe to consider a healthy tissue insidewhich a
tumor may exist as a small inclusion. This would involve space-
varying thermo-optical properties and internal boundaries.

Another possible development is to take into account the dis-
ordered nature of biological tissues. Several works have already
underlined the turbulent nature of the optical properties’s varia-
tions in biological tissues.56 Taking into account random spatial
variations for the refractive index leads to both coherent and
incoherent scattering, whereas random spatial variations of the
absorption coefficient can result in bleaching.57 Both features
may be of prime importance for OT.

Appendix A: Integral Formulation of the TRTE
The integral formulation of the TRTE along the optical path
ðuf; ifÞ is 58

ψðif;Ω; tÞ¼ψðuf;Ω;γðtÞÞexpð−μtΔsf Þþ
Z

if

uf

�
Sðs;Ω;ζðtÞÞ

þμs

Z
Ω 0¼4π

pðΩ 0 →ΩÞψðs;Ω 0;ζðtÞÞdΩ 0
�

× expð−μtðif − sÞÞds; (15)

with γðtÞ ¼ t −
nΔsf

c and ζðtÞ ¼ t − n ðif−sÞ
c . Equation (15) is valid

for γðtÞ ≥ 0 and ψðif;Ω; tÞ ¼ 0 for γðtÞ < 0. It should be noted
that with the CFL condition, γðtÞ ≤ t − Δt and ζðtÞ ≤ t − Δt.
Also, it should be noted that in the integral, Sðs;Ω; ζðtÞÞ and
ψðs;Ω 0; ζðtÞÞ for s ∈ ðuf; ifÞ are not known a priori. To simplify
the calculations, the terms at time γðtÞ and ζðtÞ can be approxi-
mated by these same terms at time t. This approximation is
justified if the length of the optical path Δsf is extremely short,
which is the case for sufficiently small control volumes. Thus, the

integral formulation of the TRTE is reduced to the integral
formulation of the steady state RTE.41

Appendix B: Projections and Linear Interpolations
To simplify, a notation was introduced: A <¼ B means point
A is upstream from point B. A Ω specific direction of radiation
and a triangle of reference denoted by J ¼ ðP1; P2; P3Þ with
P1 <¼ P2 <¼ P3 are considered (Fig. 7). ΔPlðl ¼ 1; 2; 3Þ are
the planes orthogonal to the Ω direction and that pass respec-
tively by Pl. The ilðl ¼ 1; 2; 3Þ integration points are related
to the J triangle.

For cases presented further, except in particular cases such as
boundaries (seeRef.47 for thedetails), pointsu1 andu2 arealways
built in the sameway. The if (f ¼ 1; 2) integration points are pro-
jected on lines perpendicular to the Ω direction and located
upstream from points i1 and i2, the lineΔP1 in the case of points
u1 and u2 (Fig. 7). The point u3 is the intersection point, located
upstream from i3, between theΩ direction and the first sidemet of
an element of J . Thus, only two cases can arise: u3 is on the line
ðP1; P2Þor, it ison the line ðP1; P3Þ. Inourcase, radiancesatpoints
uf are approximated by linear interpolation with the values of the
closest upstream nodes. Thus, the following principal relations
have to be taken into account

ψ ðm;nÞ
u1 ≈ ψ ðm;nÞ

P1
;ψ ðm;nÞ

u2 ≈ ψ ðm;nÞ
P1

ðm; nÞ ∈ f1; : : : ; Nθg × f1; : : : ; Nφg: (16)

If u3 is on the line ðP1; P2Þ or on the line ðP1; P3Þ, one has

ψ ðm;nÞ
u3 ≈

ju3P2j
ju3P1j þ ju3P2j

ψ ðm;nÞ
P1

þ ju3P1j
ju3P1j þ ju3P2j

ψ ðm;nÞ
P2

ðm; nÞ ∈ f1; : : : ; Nθg × f1; : : : ; Nφg: (17)

In the same way, the double sum in Eq. (11) (related to the
scattering) is approximated by

XNθ

m 0¼1

XNφ

n 0¼1

p̃ðm 0;n 0;m;nÞψ ðm 0;n 0Þ
ul ΔΩðm 0;n 0Þ

≈
XNθ

m 0¼1

XNφ

n 0¼1

p̃ðm 0;n 0;m;nÞψ ðm 0;n 0Þ
Pl

ΔΩðm 0;n 0Þ ðl ¼ 1; 2Þ;

XNθ

m 0¼1

XNφ

n 0¼1

p̃ðm 0;n 0;m;nÞψ ðm 0;n 0Þ
u3 ΔΩðm 0;n 0Þ (18)

≈
XNθ

m 0¼1

XNφ

n 0¼1

p̃ðm 0;n 0;m;nÞ
� ju3P2j
ju3P1j þ ju3P2j

ψ ðm 0;n 0Þ
P1

þ ju3P1j
ju3P1j þ ju3P2j

ψ ðm 0;n 0Þ
P2

�
ΔΩðm 0;n 0Þ;

ðm; nÞ ∈ f1; : : : ; Nθg × f1; : : : ; Nφg: (19)

It should be noted that node P3 was not considered in the
formula since, by construction (Fig. 7), it is located downstream
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from the if ðf ¼ 1; 2; 3Þ integration points. For particular cases,
we invite the reader to refer to Ref. 47 for the details.

Appendix C: α-Scheme Applied to the TRTE
The precision in time of the computational scheme Eq. (12) can
be improved by using the well-known α-scheme with 0 ≤ α ≤ 1.
Let us recall that α ¼ 0; 0.5; 1 correspond respectively to the
explicit, Crank-Nicolson and implicit schemes. In our case,
the α-scheme is written as

ψkþ1;ðm;nÞ
P − αΨ

�
Skþ1;ðm;nÞ
P − μtPψ

kþ1;ðm;nÞ
P

þ μsP
XNθ

m 0¼1

XNφ

n 0¼1

p̃ðm 0;n 0Þ→ðm;nÞ ψkþ1;ðm 0;n 0Þ
P ΔΩðm 0;n 0Þ

�

þ αΛ
XNf

f¼1

�
ψkþ1;ðm;nÞ
uf Dðm;nÞ

uf þ Ckþ1;ðm;nÞ
uf

þ
�XNθ

m 0¼1

XNφ

n 0¼1

p̃ðm 0;n 0Þ→ðm;nÞψkþ1;ðm 0;n 0Þ
uf ΔΩðm 0;n 0Þ

�
Eðm;nÞ
uf

�

¼ ψk;ðm;nÞ
P þ ð1 − αÞΨ

�
Sk;ðm;nÞ
P − μtPψ

k;ðm;nÞ
P

þ μsP
XNθ

m 0¼1

XNφ

n 0¼1

p̃ðm 0;n 0Þ→ðm;nÞ ψk;ðm 0;n 0Þ
P ΔΩðm 0;n 0Þ

�

− ð1 − αÞΛ
XNf

f¼1

�
ψk;ðm;nÞ
uf Dðm;nÞ

uf þ Ck;ðm;nÞ
uf

þ
�XNθ

m 0¼1

XNφ

n 0¼1

p̃ðm 0;n 0Þ→ðm;nÞψk;ðm 0;n 0Þ
uf ΔΩðm 0;n 0Þ

�
Eðm;nÞ
uf

�

ðm; nÞ ∈ f1; : : : ; Nθg × f1; : : : ; Nφ�: (20)

It should be noted that if the medium is assumed to be emit-
ting and if temperature is not constant inside the medium then, a
development in Taylor series at the first-order can be used to
evaluate the term ψb½Tkþ1

P � at time tkþ1

ψb½Tkþ1
P � ¼ ψb½Tk

P� þ ðTkþ1
P − Tk

PÞ
dψb½T�
dT

ðTkÞ: (21)

Appendix D: Verification of the Computational
Method
To verify the accuracy and stability of the computational method
for solving transient radiative transfer problem in our context, a
benchmark case closest to our application was examined. An
absorbing and anisotropically scattering medium in square cav-
ity of length L� ¼ 10 with transparent walls was considered.
The left face was subjected to collimated short-pulsed light
with square profile (the pulse width t�p ¼ 1) having a peak inten-
sity of unit magnitude. The scattering albedo was equal to 0.998
and the scattering phase function considered was of linear
anisotropic form: pðΘÞ ¼ 1þ ρ cosΘ. Positive and negative
values of the coefficient ρ correspond to forward and backward
scattering phase function, respectively. The effect of anisotropic
scattering on the transient transmittance and reflectance at the

central position of the east and west faces of the medium respec-
tively are presented (Fig. 8). A comparison between our results
and numerical solutions obtained by Sakami et al.8 are given.
In Ref. 8, a FDM with a high order upwind piecewise parabolic
interpolation scheme (known in CFD) was used to spatially
solve the TRTE. The S8 angular discretization and a fully impli-
cit scheme to discretize the transient term were performed. To
facilitate the comparison, we used angular and spatial discreti-
zations close to those selected by the authors. A good level of
compliance was found and the few small differences observed
can be attributed to the completely different computational
methods that were used. Under the conditions specified above,
the computational time required by our program to carry out
2,000 time steps (Δt� ¼ 0.05) was about 86 min.
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