
Decision-making and control with diffractive
optical networks
Jumin Qiu,a Shuyuan Xiao ,b,c Lujun Huang,d,* Andrey Miroshnichenko,e Dejian Zhang,a Tingting Liu ,b,c,* and
Tianbao Yua,*
aNanchang University, School of Physics and Materials Science, Nanchang, China
bNanchang University, School of Information Engineering, Nanchang, China
cNanchang University, Institute for Advanced Study, Nanchang, China
dEast China Normal University, School of Physics and Electronic Science, Shanghai, China
eUniversity of New South Wales Canberra, School of Physics and Electronic Science, Canberra, Australia

Abstract. The ultimate goal of artificial intelligence (AI) is to mimic the human brain to perform decision-making
and control directly from high-dimensional sensory input. Diffractive optical networks (DONs) provide a
promising solution for implementing AI with high speed and low power-consumption. Most reported DONs
focus on tasks that do not involve environmental interaction, such as object recognition and image
classification. By contrast, the networks capable of decision-making and control have not been developed.
Here, we propose using deep reinforcement learning to implement DONs that imitate human-level decision-
making and control capability. Such networks, which take advantage of a residual architecture, allow finding
optimal control policies through interaction with the environment and can be readily implemented with existing
optical devices. The superior performance is verified using three types of classic games: tic-tac-toe, Super
Mario Bros., and Car Racing. Finally, we present an experimental demonstration of playing tic-tac-toe using
the network based on a spatial light modulator. Our work represents a solid step forward in advancing
DONs, which promises a fundamental shift from simple recognition or classification tasks to the high-level
sensory capability of AI. It may find exciting applications in autonomous driving, intelligent robots, and
intelligent manufacturing.
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1 Introduction
Artificial intelligence (AI) is to imitate the functions of neurons in
performing decision-making by creating hierarchical artificial
neural networks. It has found many exciting applications in com-
puter vision,1,2 natural language processing,3,4 and data mining.5

Except for electronics and computer science applications, artifi-
cial neural networks have been applied to optimize the design of
photonic devices, including metamaterials and metasurfaces, sig-
nificantly facilitating the performance of photonic devices beyond
the conventional inverse design strategy.6–13

Recently, optical neural networks have drawn tremendous at-
tention because they provide a compelling route for processing
information at the speed of light,14–19 with low energy consump-
tion and massive parallelism compared with the electronic-
circuit-based neural networks. In the pioneering work of Lin
et al.,20 diffractive optical networks (DONs, also known as dif-
fractive deep neural networks, D2NN) consisting of multilayer
of three-dimensional printed diffractive optical elements operat-
ing at terahertz were first proposed for inference and prediction
through parallel computation and dense interconnection at the
speed of light. Later, DONs were extended to various nanostruc-
tures for implementation. Such an architecture has been effec-
tively validated in performing specific inference functions,
such as image classification,21–24 saliency detection,25 and logic
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operation.26 More recently, a reconfigurable DON based on
optoelectronic fused computing architecture has been pro-
posed,27 which can perform different neural networks and
achieve a high model complexity with millions of neurons.
Although DONs have witnessed significant progress in the past
few years, their functions mainly focus on image classification
and object recognition without involving any interaction with
the environment. To our knowledge, human-level AI based on
DONs that can perform decision-making and control has not
yet been developed.

In this work, we bring the capability of decision-making and
control directly from high-dimensional sensory inputs to the
DON. The networks build upon deep reinforcement learning
to interact with a simulated environment for optimal control pol-
icies. The training process of policy is based solely on deep
reinforcement learning from self-play without a data set or guid-
ance. A phase profile mapping features each layer of the DON
and thus can be immediately implemented by optical modulation
devices. The effectiveness of the proposed DON is validated
with three typical games: tic-tac-toe, Super Mario Bros., and
Car Racing. We also provide a direct experimental demonstration
of such a DON capable of playing tic-tac-toe. Excellent agree-
ment can be found between theoretical prediction and experimen-
tal measurements. This work enables a fundamental shift from the
target-driven control of a predesigned state for simple recognition
or classification tasks to human-imitative AI, revealing the po-
tential of optoelectronic AI systems to solve complex real-world
problems. We envision that such DONs will find promising ap-
plications in autonomous driving, industrial robots, and intelli-
gent manufacturing, enhancing human life in every aspect.

2 Methods
The working principle of the DON for decision-making and
control is illustrated in Figs. 1(a)–1(c), using an example of
playing Nintendo’s classic video game Super Mario Bros. In
general, a human player goes through seeing, understanding,
and making a decision in each step, and these perception and
control behaviors loop until the game is over. To play games
in a human-like manner, the network necessitates the sensory
capability to capture continuous, high-dimensional state spaces
and the controllable execution ability of sequences of different
behaviors. The DON shown in Fig. 1(b) comprises the specific
free-space configuration: an input layer with images encoded
using an optical modulation device, multiple hidden layers en-
coding phases of transmitted waves, and an output layer into
which the computational results are imaged.

More importantly, the proposed framework for decision-
making and control integrates the deep reinforcement learning
and the DON into a training procedure, allowing interaction be-
tween the game and the agent to learn control policies that can
be implemented through the optical computing platform. The
method observes each state within the game environment and
chooses a particular action through a learned control policy
for each situation. Then, the changed environment generates
observation of the new state, makes the following action, and
continuously updates the control policy in the loop. Unlike
the previous optical networks, the input images from each video
game frame are continuous high-dimensional sensory data.
Furthermore, the execution procedure, such as playing games,
is essentially a type of interactive control rather than the one-
way recognition for a single objective, such as written digits
or fashion items.

To address the complexity of imitating human players on the
optical platform, we develop the training framework of policy
and network shown in Fig. 1(d), using a combination of novel
and existing general-purpose techniques for neural network ar-
chitectures. As shown in the middle block of Fig. 1(d), central to
the architecture is a control policy πθðajsÞ, which is represented
by a convolutional neural network (CNN) with parameters θ that
makes states s as inputs and takes actions a as outputs by opti-
mizing the reward of games of self-play. Note that the training
epoch of deep reinforcement learning is markedly more than
that of the DONs due to the training of policies starting from
entirely random behavior. Thus, we developed the training pro-
cess approach with two main phases to eliminate unnecessary
computations. First, deep reinforcement learning through an
agent interacts with a simulated game environment to find a
near-optimal control policy to meet the specified goals. Second,
the control policy updates the DON by the error backpropaga-
tion algorithm.

In the first phase, a deep reinforcement learning algorithm
collects data to find a control policy concerning the specific re-
ward function through interaction with the game environment,
thereby achieving the desired outcome. The states of these
games need to satisfy the Markov property that the information
of a particular state contains all relevant histories. Thus, it is
possible to perform actions in the current state and move to
the next state without considering the previous states. The agent
interacts with the environment through a sequence of observa-
tions, actions, and rewards. At each step of interaction, the agent
observes the state of the environment to decide on an action to
take and then gives rewards based on the game result. The neural
network decides the best action for each step based on the re-
ward. It continuously updates the policy using proximal policy
optimization28 to find the optimal action. After testing, the
trained policies can all complete the respective game. Compared
with previous studies, the algorithm only requires game rules
without the need for human data, guidance, or domain knowl-
edge, avoiding the performance’s dependence on the data set’s
quality.

In the second phase, the control policy is transferred onto
the DON. The optimal control policy modeled using a CNN
is utilized as the ground truth during the learning procedure.
Meanwhile, following the forward propagation model based
on Huygens’ principle and Rayleigh–Sommerfeld diffraction,
the encoded input light can be directed into any desired location
at the output layer via the learnable transmission coefficients,
that is, phase profiles of hidden layers in the network. The en-
ergy distributions clustered in the target detection region imply
the prediction results. The transmission coefficients at each dif-
fractive layer should be adequately trained via the error back-
propagation algorithm and a loss function with mean square
error, which is defined to evaluate the performance between
the output intensities and the ground-truth target. The adaptive
moment estimation,29 an algorithm for first-order gradient-based
optimization of stochastic objective functions, is adopted to re-
duce the loss function. Then, the gradient of the loss function
concerning all the trainable network variables is backpropagated
to iteratively update the network during each cycle of the train-
ing phase until the network converges.

Once the training is completed, the target phase profiles of
the diffractive layers are determined, which are ready to connect
the physical and digital worlds for optical neuromorphic com-
puting. Here, we choose an approach similar to the diffractive
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Fig. 1 DON for decision-making and control. (a)–(c) The proposed network plays the video game
of Super Mario Bros. in a human-like manner. In the network architecture, an input layer captures
continuous and high-dimensional game snapshots (seeing), a series of diffractive layers choose a
particular action through a learned control policy for each situation faced (making a decision), and
an output layer maps the intensity distribution into preset action regions to generate the control
signals in the games (controlling). (d) Training framework of policy and network. Deep reinforce-
ment learning through an agent interacts with a simulated environment to find a near-optimal con-
trol policy represented by a CNN, which is employed as the ground truth to update the DON by
an error backpropagate algorithm. (e) The experimental setup of the DON for decision-making and
control. (f) The building block of the DON.
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processing unit27 to build the network because of its reconfigur-
ability and ability to support millions of neurons for computa-
tion. The experimental setup of the DON is shown in Fig. 1(e).
A laser beam with a working wavelength of 632.8 nm is
expanded using a microscope objective and lens, while a linear
polarizer can be embedded to adjust the incident light intensity,
which is then projected onto a digital micromirror device
(DMD). The input image data are optically encoded and modu-
lated by the DMD, followed by two relay lenses to adjust the
image to the appropriate size and projected onto the spatial light
modulator (SLM) for phase modulation. The optical iris is used
to filter out high-order diffractions and stray light. The diffrac-
tion pattern is imaged onto the camera; then, the output image is
input to the DMD for the next diffractive layer until the end of
the network computation. After that, the optical intensities in the
predefined detection zones are extracted from the output image,
and the predicted results are decoded to generate the control sig-
nals in the games. Then, the new frame image of the video game
stimulates the new process procedure, and the updated results
control the game until the end. In addition, because the DMD
is a binary device, the training process needs to simulate the fast
rotation of the micromirror when displaying gray-scale images
to make the training results more practical. We adapt the
previously trained phase profiles for the DMD, as detailed in
the Supplementary Material. The entire computing process is
primarily optical, except for the dataflow control. These light
modulation devices are very fast and therefore allow for real-
time computation.

Such an experimental system allows for a deep residual
framework that can overcome the vanishing gradients problem
by introducing shortcut connections between layers, and the
architecture has become one of the cornerstones of neural
networks.30 Figure 1(f) demonstrates a block that composes
the DON. First, when there is an angle between the polarization
direction of incident light and the extraordinary axis of the liquid
crystal of SLM, some light will not be modulated and reflected
directly to the camera, thus creating a shortcut connection.
Formally, the incident light is denoted as X, the diffraction com-
putation is denoted as FðXÞ, and the original mapping can be
recast into FðαXÞ þ ð1 − αÞX, where α is the modulation ratio
of the SLM, which can be fine-tuned by rotating laser and polar-
izer to change the polarization direction (or adding a half-wave
plate). Compared with previous research,31 this approach does
not require introducing additional optical devices, providing a
free improvement. In addition, the approach lowers the bar
for the polarization state of light, and partially polarized light
can be used in the network. Then, we use the photoelectric effect
occurring at each image sensor pixel to implement the activation
function of diffractive neurons, denoted as jẼj2. In addition, to
some extent, the exposure of the camera and the differences in
resolution among various devices can be analogized to the layer
normalization and downsampling operations of neural net-
works, respectively. Unlike previous studies that used complex
network structures, we stack the block to build the DON.

3 Results

3.1 Playing Tic-Tac-Toe

In our first implementation, we perform the decision-making
and control for tic-tac-toe. This classic game is played on a
3 × 3 grid of cells where each player places their mark, an X
or an O, in an empty cell. The first player to place three of their

marks in a row vertically, horizontally, or diagonally wins the
game. If all cells are filled, and neither player has three marks in
a row, the game is declared a draw. There are 255,168 possible
ways to play this game, and we use the proposed network
architecture to capture the effective policies to make the most
optimal move in every possible situation.

To play this game, the network composed of three diffractive
blocks is designed by the above training algorithm. The input
images carrying the information of the current states are en-
coded into the amplitude of the input field to the network. The
network is trained to map the incident energy into nine cells
corresponding to the grid (labeled by the numbers 1 to 9), where
the received energy distribution at each region reveals the cur-
rent state and predicts the probability of the player’s next move,
as shown in Fig. 2(a). Since the observed state and the action
are both discrete in this game, tic-tac-toe can be considered to
demonstrate our method for a collection of tasks with discrete
state and action spaces.

Note that the first player (X) and the second player (O) have
different control policies; specifically, X tries to win, and O tries
to draw in the ideal case. After training, the X moves of each
turn are illustrated in Fig. 2(b). In the first turn, two possible
positions, 1 and 5, are predicted as shown on the output.
However, the starting position of 5 is finally chosen because
of the maximum energy intensity among these positions.
After O responds to X, the input image changes, and in the sec-
ond turn, the intensity distributions change as well so that the
predicted move of X at the position of 1 is determined by
extracting the maximum signal among the unoccupied posi-
tions. It is also noted that the output intensity is focused not only
on the predicted position but also on the current states with
occupied positions. Following this prediction and control pro-
cedure, the first player wins in the fourth turn. Following the
same principle, the O moves are predicted and controlled, as
shown in Fig. 2(c). It can be observed that O responds to a cor-
ner opening with a central mark and chooses moves next to X to
avoid the opponent having three marks in a row. In such a way,
O prevents X from winning. This policy is successfully used in
the proposed network, and a draw game result is shown in
Fig. 2(c), while O can win if X plays weakly in some excep-
tional cases.

While, in general, a human player aims to win the game,
tic-tac-toe will end in a draw if both players play their best
because it is a zero-sum game. To evaluate the accuracy and
effectiveness of our proposed network in playing tic-tac-toe,
we use the sum of the win and draw rate as the accuracy rate.
After the self-play training per game rules, we numerically test
the design of the DON with all possible states, as shown in
Fig. 2(d). The policy we trained is optimal and will only
choose the best moves, so only 670 states will appear. Among
them, the accuracy rate of X is 100%, the accuracy rate of O is
90.56%, and the average rate is 91.79%. The accuracy of the
network in predicting O shows a slight degradation relative to
that of X due to factors such as more complex policy and more
states of O.

In addition, we evaluate the dependence of the prediction ac-
curacy on the number of hidden layers in Fig. 2(e). It can be seen
that the accuracy of the network is greatly improved when
changing from 2 to 3 layers because if there are not enough
layers in the network, the shortcut connections between layers
may not be fully computed, thus affecting the results. However,
the accuracy does not show a noticeable change when the layer
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number continues to increase from 3, which may be due to the
following reasons. First, the DON is unsuitable for predicting
states with high similarity;32 see the Supplementary Material
for detailed derivation. In addition, DONs have a global percep-
tual property similar to a multilayer perceptron (MLP), which
can capture features at given spatial locations. However, it is
difficult to capture features among different spatial locations.33

We will discuss this point later in the paper.

3.2 Playing Super Mario Bros

In our second implementation, the world 1-1 of the original Super
Mario Bros. game is used to demonstrate the validity of the DON.
Unlike the tic-tac-toe on a square-divided board, Super Mario
Bros. is a video game with continuous high-dimensional state in-
puts. The gameplay consists of moving the player-controlled char-
acter, Mario, through two-dimensional levels to get to the level’s
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Fig. 2 Playing tic-tac-toe. (a) The schematic illustration of the DON composed of an input layer,
hidden layers of three cascaded diffractive blocks, and an output layer for playing tic-tac-toe.
(b) and (c) The sequential control of the DON in performing gameplay tasks for X and O.
(d) The accuracy rate of playing tic-tac-toe. There is a collection of 87 games utilized for predicting
X, obtaining 81 wins and 6 draws in these games. In the rest of the 583 games, O obtains 454 wins,
74 draws, and 21 losses. When previous moves have occupied the predicted position at a turn,
such a case is counted as a playing error and occurs 34 times. (e) Dependence of the prediction
accuracy on the number of hidden layers.
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end, traversing it from left to right, avoiding obstacles and ene-
mies, and interacting with game objects. In the game, the player
controls Mario to take discrete actions: run, jump, and crouch.
Under these considerations, this game can be an example of con-
tinuous state space and discrete action space for testing the pro-
posed network.

Figure 3(a) illustrates the DON for playing Super Mario
Bros. The network consists of an input layer carrying the optical
field encoded from each video game frame, hidden layers com-
posed of three cascaded diffractive blocks trained by the same
algorithm, and the output layer mapping the intensity distribu-
tion into preset regions. It is clear that the input images from the

game scene consisting of moving backgrounds and different
objects are more complex compared with the tic-tac-toe with
a regular pattern. In addition, the game images are similar to
adjacent ones and constantly changing due to the gameplay on
a side-scrolling platform, which challenges the DON in process-
ing highly similar input states for choosing optimal actions.

After training with the control policy, the network makes de-
cisions for Mario’s optimal action. It achieves accurate control
to reach the end of the level until taking down the flag raised
above the castle, as shown in Video 1. Specifically, at any given
state, the most optimal action that Mario chooses to take is pre-
dicted by the maximum action signal. In the examples of
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Fig. 3 Playing Super Mario Bros. (a) The layout of the designed network for playing Super Mario
Bros. (b) and (c) Snapshots of Mario’s jumping and crouching actions by comparing the output
intensities of actions. The output intensity of the jump is maximum at the 201st frame, so the pre-
dicted action is jump, and Mario is controlled to act, as shown in panel (b). A similar series of
prediction and control for another crouch action can also be observed in panel (c). (d) The inverse
prediction result. Considering the predicted crouch at the current state is crucial for updating
Mario’s action, we use the maximized output intensity of the crouch as input, ignoring the simulta-
neous output of other actions (Video 1, MP4, 19.8 MB [URL: https://doi.org/10.1117/1.APN.3.4
.046003.s1]).
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Figs. 3(b) and 3(c), we take some snapshots from Video 1 to
analyze the decision-making and control of Mario’s actions in
complex and time-varying configurations. Since the goal of our
network is to finish the level as quickly as possible success-
fully, Mario should maintain the run action until the end while

choosing to jump or crouch to overcome the challenges at
certain states. Thus, the output intensity of run remains high
throughout the game, while the intensity of jump and crouch
shows smaller fluctuations, verified by Figs. 3(b) and 3(c).
Although this significant intensity triggers the prediction only
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Fig. 4 Playing Car Racing. (a) The layout of the designed network for playing Car Racing. (b) The
control of the steering direction and angle of the car with respect to the difference value between
the intensities at the current state, normalized between −1 and 1. (c)–(f) Snapshots of controlling
the car steering. When the car is facing a left-turn track in panel (c), the output intensity on the left
keeps the value greater than the right intensity, allowing continuous control in updating the rotation
angle of the left-turn action. A similar control process can also be performed for the right-turn
track in panel (e). In addition, the anti-disturbance of the network is validated by introducing
(d) the Gaussian blur and (f) Gaussian noise to the game images (Video 2, MP4, 8.36 MB
[URL: https://doi.org/10.1117/1.APN.3.4.046003.s2]; Video 3, MP4, 6.78 MB [URL: https://
doi.org/10.1117/1.APN.3.4.046003.s3]; Video 4, MP4, 16.8 MB [URL: https://doi.org/10.1117/
1.APN.3.4.046003.s4]).
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at a particular frame, this control signal is intentionally set to last
for 20 frames to ensure that Mario finishes the entire action. It is
worth noting that the intensity-frame curve remains relatively
stable during the 516th to 530th frame, which can be understood
with the static and high-contrast background images after Mario
enters the pipe, as shown in Fig. 3(c).

To gain an insight into how the DON makes decisions, we
investigate the network’s perception capability, employing in-
verse prediction in Fig. 3(d). We demonstrate what the network
has learned from the high-dimensional sensory input to perform
the crouch action corresponding to the 501st frame image. We
use the error backpropagation algorithm in a retrained network
to inversely predict the input image at this moment, where α ¼ 1

in the network to avoid the effect of the residual structure;

see the Supplementary Material for detailed derivation. The
inversely predicted image matches the original input image
of the 501st frame, especially the background, such as clouds
and grasses. When humans play the game, they may ignore
these backgrounds and focus only on the critical parts, such
as Mario, enemies, and pipes. The inverse prediction of the
whole scene highlights the capability of the network to extract
global features instead of local ones; the property is the same as
MLP, further verifying the perception capability of the network
in capturing the global features to make decisions.

3.3 Playing Car Racing

In our third implementation, we demonstrate the proposed net-
work capability in Car Racing, which requires perceiving the
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Fig. 5 Experimental demonstration of the DON for tic-tac-toe. (a) The photo of the experimental
system, where the unlabeled devices are lenses, a spatial filter is used to remove the unwanted
multiple-order energy peaks, and a filter is mounted on the camera. (b) The output of the first layer
of the sample in Fig. 2(a), and the red arrows represent the polarization direction of the incident
light. (c) and (d) The sequential control of the DON in playing the same two games as in Figs. 2(b)
and 2(c), respectively. The experimental results are normalized based on simulation results. Sim.,
simulation result; Exp., experimental result.
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game environment using continuous high-dimensional inputs
and making decisions to control the car by performing continu-
ous steering actions. The game’s control policy is trained based
on the rules of keeping the car within the track by controlling its
rotation, and the car is set to increase the speed once the game
starts continuously. The DON architecture is shown in Fig. 4(a)
and is similar to previous examples. The input energy of the
optical field is redistributed through three diffractive blocks into
the two designated regions on the left and right of the output
layer. The difference value between the intensities at the current
state controls the steering direction and angle of the car shown in
Fig. 4(b). In addition, just as in the steering dead zone in real
vehicles, a slight difference value would not lead to steering ac-
tion to avoid disturbance.

The successful network implementation in Car Racing is
illustrated in Video 2, where the car is controlled in the center
of the track almost within the whole lap. For the two basic ac-
tions of the left and right turn, some exemplary snapshots are
provided in Figs. 4(c) and 4(e). Specifically, the negative differ-
ence values in Fig. 4(c) predict the left turn of the car wheel,
while the larger absolute values indicate sharper turns. It is also
observed that sometimes the difference values approach zero,
and a rotation angle of 0 is predicted to keep the car moving
in the direction of the current state. Due to the larger turning
angle of the track, the intensity difference of the left turn shows
a more drastic change. It is also intriguing that although the
steering of the car in the left turn is somewhat unsmooth so that
it does not appear in the middle of the track in certain states, the
controlled action that is updated in the following state leads to
successful gameplay. This real-time feedback and updating fea-
ture shows the great potential of the architecture for challenging
auto-driving almost at the speed of light,34 such as dealing with
sudden obstacles.

To validate the anti-disturbance ability of the proposed ap-
proach, we introduce two crucial randomization disturbance
mechanisms to the frame image of the game and then test
the network performance in controlling Car Racing. With the
same network previously trained, Gaussian blur and Gaussian
noise are added to the frames; the control results are shown
in Figs. 4(d) and 4(f), respectively. Although the introduction
of disturbances, including blur and noise, causes the quality de-
cline of the input image, the car can still maintain accurate and
effective control to successfully complete the game, as verified
by Videos 3 and 4. Compared with the normal cases in Figs. 4(c)
and 4(e), the output intensity curves in Figs. 4(d) and 4(f) show
similar trends to control the left or right turning actions.
However, the curves are less smooth, with more amplitude fluc-
tuations, indicating unsmooth steering angle control. The suc-
cessful control in the cases with the randomization disturbance
reveals the great perception of the game environment, especially
the full access to the global features.

3.4 Experimental Demonstration of Playing Tic-Tac-Toe

Finally, to evaluate the actual experimental performance of the
DON, we built an experimental system using off-the-shelf op-
tical modulation devices. It realizes residual architecture with
only one path of light, reducing additional devices and easier
alignment. We tested it by playing tic-tac-toe, the experimental
system, as shown in Fig. 5(a).

We first tested our proposed residual architecture. Fig. 5(b)
shows the effect of our proposed residual architecture, which is

the output of the first layer of the sample in Fig. 2(a).
It can be seen that the value of α varies with the polarization
direction of the incident light. This shows that our proposed
residual architecture is valid and can easily adjust the ratio of
modulation and residual channels to flexibly adapt to various
tasks.

After that, we tested the same two games as in Figs. 2(b) and
2(c); the experimental results are presented in Figs. 5(c) and
5(d). It can be seen that the intensity distribution of the output
changes as the input game state changes. Due to the unavoidable
physical error in the experimental system, the experimental
results are different from the simulated ones, but the overall
intensity changes are very similar. The maximum intensity dis-
tributions occur at the same positions, and the same games are
successfully completed.

4 Conclusion
We have demonstrated DONs for decision-making and control.
The optimal control policy enables this technique through a har-
monious combination of deep reinforcement learning and the
DON architecture. Based solely on reinforcement learning from
self-play, the control policy of the training algorithm is flexible,
as demonstrated by successfully learning to play the three types
of classic games. In addition, we further exploit the potential
of the photoelectric fusion DON by introducing a free residual
architecture that achieves excellent performance in the simplest
network structure.

It is worth noting that tic-tac-toe does not achieve perfect re-
sults despite the definite rules and optimal control policy, just
like Super Mario Bros. and Car Racing. There are several pos-
sible reasons for this result: Playing tic-tac-toe needs to strategi-
cally handle different states and a more significant number of
output signals. The gameplay of tic-tac-toe requires correct pre-
dictions at each state, while the other two games show that better
error tolerance and accidental mistakes do not necessarily affect
the results. In addition, using the difference as a mechanism to
trigger actions improves the network’s performance in Car
Racing to some extent. Since the DON is not good at extracting
local features, the differences in intensity distributions between
the adjacent input board images are challenging to detect for
tic-tac-toe.

By testing our proposed DON on the challenging domain of
classic games, we demonstrate its ability to master difficult
game control policies for playing games for the first time on
an optical platform. This work bridges the gap between optical
and digital neural networks aiming to achieve human-level AI.
The most important aspect is that the decision-making and con-
trol process is implemented in optical devices at the speed of
light by imitating human competence. Another ideal platform
for implementing DONs is metasurface. Metasurfaces provide
an unprecedented ability to manipulate the wavefront of light
and are widely used to implement sophisticated functions such
as holography and computational imaging.35–38 Therefore,
driven by the demand for all-optical on-chip integration of
AI systems, some recent studies have introduced optical meta-
surfaces consisting of an array of subwavelength meta-atoms
to replace bulky diffractive optical devices for high-density
integration.22,23,39–41 The working mechanism and design princi-
ple of our proposed DONs are universal, and thus can be gen-
eralized to nanostructures. We have also implemented the above
network on metasurfaces; see the Supplementary Material for
details. Therefore, a metasurface-based DON can be envisaged
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and will serve as a very promising candidate for photonic inte-
grated circuits.

Despite the exciting results of playing games, the DON cur-
rently has limitations for handling more complex tasks. First, for
the sake of the computational requirements of optical forward
propagation, we deploy a two-phase training architecture to ob-
tain the policy model before iterating the DON instead of end-
to-end learning in this work. Combining the two steps may re-
duce errors and make it easier to use. Second, ideally, the last
layer of the network should not have a shortcut connection,
which can be improved by modifying the experimental system.
In addition, given the similar properties of the DON and MLP,
the introduction of MLP-based attention mechanisms33,42 into
the field of optics could be considered. Moreover, the inference
and control capability of DONs could be improved by introduc-
ing methods such as nonlinear optical effects,43–46 multichannel
structures,47 and Fourier space25 in the future, leading to a variety
of new applications. While preliminary, this research suggests
that the DON has great potential for processing complex visual
inputs and tasks. It could provide a promising avenue for an
optical computing system for decision-making and control,
which would be a fruitful area for next-generation AI.
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