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Segmentation and classification of burn images by color
and texture information

Begona Acha Abstract. In this paper, a burn color image segmentation and classi-

Carmen Serrano fication system is proposed. The aim of the system is to separate burn
Jose 1. Acha B o wounds from healthy skin, and to distinguish among the different
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University of Seville inputs to the system. The system is based on color and texture infor-
Camino de los Descubrimientos s/n mation, since these are the characteristics observed by physicians in
41092 Sevilla, Spain order to form a diagnosis. A perceptually uniform color space
(L*u*v*) was used, since Euclidean distances calculated in this
space correspond to perceptual color differences. After the burn is
segmented, a set of color and texture features is calculated that serves
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University of Seville as the input to a Fuzzy-ARTMAP neural network. The neural network
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1 Introduction the assessment of the healing of skin wounds or ufc@mnd

For a successful evolution of a burn injury it is essential to € diagnétgfil?_) of pigmented skin lesions such as
initiate the correct first treatmehtfo choose an adequate one, Melanomas.”>The analysis of lesions involves more tradi-

it is necessary to know the depth of the burn, and a correct ional image processing techniques such as edge detection and
visual assessment of burn depth highly relies on specialized ©Pi€Ct identification, as well as an analysis of the color, ir-
dermatological expertise. As the cost of maintaining a burn r€gularity, and shape of the segmented lesion. In wound
unit is very high, it would be desirable to have an automatic 2nalysis, the analysis of the colors within the wound site is
system to give a first assessment in all the local medical cen-°ftén more important than the detection of the wound border
ters, where there is a lack of special®fsThe World Health or the calculation of its area. Particularly, in the case of burn

Organization demands that, at least, there must be one bed iffl€Pth determination, focusing on the shape of the burn is
a burn unit for each 500000 inhabitants. So, normally, one irrelevant for predicting its depth. The main characteristics for

burn unit covers a large geographic extension. If a burn pa- this purpose are color and texture information,_ as the_y are t_he
tient appears in a medical center without burn unit, a tele- €atures observed by physicians in order to give a diagnosis.
phone communication is established between the local medi- Automatic burn wound diagnosis is still a largely unex-
cal center and the closest hospital with burn unit, where the Plored field. In the related bibliography, one can find that
nonexpert doctor describes subjectively the color, shape, andtN€re is a tendency to investigate objective methods for deter-
other aspects considered important for burn characterization.MNiNg the depth of the burn in order to reduce the subjectiv-

The result in many cases is the application of an incorrect first Ity @nd the high experience requirement that visual inspection
treatment (very important for a correct evolution of the

demands. Some research into the relationship between depth
wound, or unnecessary displacements of the patient, involv-

and superficial temperatifehas been developed. There are
ing high sanitary cost and psychological trauma for the patient &!SC other works trying to evaluate burn depth by using ther-
and family.

mographic image¥) infrared and ultraviolet imagé$,radio-

With the fast advances in technology, computer aided di- actve isotopes’ and laser Doppler flux measureméfits
agnosis(CAD) systems are gaining widespread acceptance. = ©On the other hand, there is hardly bibliography about burn
However, nowadays, the research in the field of skin color depth determination by visual image analysis and processing.
images is developing slowly due to the difficulty of translat-

Although some research groups apply segmentation algo-
: H 7,8,21,22 H
ing human color perception into objective rules, analyzable by "thms to bumn images] they try to give an assessment

a computer. Generally speaking, one can find two main appli- ©f the healing of the bum, so they focused on calculating
cations about skin color image processing in the literature; differences among several aspects such as area, shape, and
appearance in order to give a prediction of the healing evolu-
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Fig. 1 Different appearances that could present a burn: (a) superficial dermal (blisters), (b) superficial dermal (red), (c) deep dermal, (d) full thickness
(beige), (e) full thickness (brown).

Fig. 4 Examples of the different 4949 burn images used to train the classifier: (a) superficial dermal (blisters), (b) superficial dermal (red), (c) deep
dermal, (d) full thickness (beige), (e) full thickness (brown).
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tion of the wound. To our knowledge, only the group of Afro- curately converted to a known color space without some ad-
mowitz et al?** tries to give a diagnosis of the burn depth. ditional information. Therefore, a study about the influence of
From this assessment, they estimate the number of days thathe different sources of illumination is needed. To perform
the wound will take to heal. They measure the optic reflectiv- this study, we photographed the Macbeth ColorChecker DC
ity in the red, green, and infrared bands, hypothesizing that it chart (Gretag-Macbeth GmbH, Martinsried, Germamnder

is highly correlated with burn healing time, and they form a three different illuminations: in a darkroom with the built-in
false color image that indicates the time of healing, or equiva- flash (guide number13 m at ISO 10§ in a darkroom with
lently, the depth of the burn. The main disadvantage of the fluorescent light, and in a room under diffused sunlight. Under
method is the complexity and cost of the image acquisition these three different situations, we fixed the 1ISO speed to 100,
system(video camera, filter wheel, motor driver, gtc. the f stop(Av) to 20 and we varied the exposure tifiev).

The main contribution of this work is the design of a clini- We define that the exposure time is optimum under a particu-
cally feasible system for automatic burn wound classification lar illuminant when it is the maximum time without saturating
based on visual digital images. First, a protocol for the stan- any channel. The ratio between the exposure times will give
dardization of the burn image acquisition was designed. This us the influences of the different sources of light. The opti-
first step was required due to the novelty of the application. mum exposure times were 1/200, 0.6, and 1.6 s for the flash,
Second, a new segmentation algorithm is proposed, which hassunlight, and fluorescent light, respectively. That means that
been proven effective in segmenting burn wound images. the flash is 320 times stronger than the fluorescent and 120
Third, once the burnt part is segmented, representative colortimes stronger than the sunlight. In other words, if we choose
and texture descriptors are extracted from it. Finally, a neural Tv =1/200 and 8 hits per color component, the fluorescent
network classifier processes these descriptors to give an estidight will not influence even the least significant bit and the

mation of the burn depth. sunlight will influence the two least significant bits. In fact,
we took a photograph under both fluorescent and sunlight
2 Materials and Methods illuminations with this parametdTv = 1/200 and only these

two least significant bits had values different to O.

2.1 Bum Characterization We can conclude that the xenon flash illumination is suf-

There are three main types of burn wound4) Superficial ficiently strong to dominate illumination. That is an important
dermal burn when the epidermis and part of the dermis are result because in this way we only have to calibrate the im-
destroyed. The presence of blistefssually brown color ages once for each camera, and not for each room where
and/or a bright red color characterize it. It is painf@) Deep patients are treated.

dermal burn it is characterized by its pink-whitish cola(3)
Full-thickness burnall the skin thickness is destroyed and 92.2.2 Calibration
skin grafts are needed. A beige-yellow or a dark brown color
characterizes it. It is not painful.

Although a burn wound is classified in three classes, it can
present five different appearancés,) Blisters they are su-
perficial dermal burns with a bright texture and a rose-brown
color. (B) Bright red they are superficial dermal burns with
bright red colors and wet appearan@@) Pink-white they are

deep dermal burns with a dotted appearan@®. Yellow- tween RGB and CIE (Commission Internationale de

beige first appearance of fu_II-thlckness burr@) Brown I'Eclairage XY Z (device-independent color spacén the lit-
second appearance of full-thickness burns. Examples of each h f . ; f
appearance are shown in Fig. 1. erature there are many trans orm{:mon matrlce.s. R)GIB Fo
XY Z color space, but they are defined for specific illuminants
(D65, D50, eto.and specifidR GB primaries(CCIR Rec. 709,
FCC-NTSC, et:?® We have developed a calibration method

The image .acquisition was carried out by means of a digital based on the Macbeth ColorChecker DC chart, which is spe-
photographic camera, the Canon EOS 30@&non Inc., To-  iea|ly designed for calibration of digital cameras. The Mac-

kyo, Japain Any nonspecialized person should be able to ac- beth ColorChecker DC chart has 240 color chips and it is
quire data from the patient, because it is not possible to havesupplied with data giving the CIK'Y Z chromaticity coordi-
an e)_(pert in each center. A digital photographic camera is €aSYnates of each chip under D50 illuminant. The 240 chips oc-
to utilize and people are used to them. . cupy an area of 12 cm20 cm. Our method finds the trans-

) '_I'he problems we found that ha_d to be_ sol_ved when USING @ f4rmation matrix fromRGB under unknown illuminant to
digital photographic camera for this application are explained XY Z under D50, and corrects the nonuniformity of the illu-

in the following subsections. mination as well as the spatial nonuniformity of the camera
sensitivity. This algorithm iteratively performs the following

An additional problem we encountered is that manufacturers
normally do not publish either the réR), green(G), blue(B)
primaries of the camera or the color temperature of the flash.
Therefore we need to determine in some way a transformation
matrix to convert from measure®GB coordinates to a
device-independent color representation system.

For this purpose, we find the matrix transformation be-

2.2 Image Acquisition and Calibration

2.2.1 llumination influence

The most important source of information for our system in steps: ) _ _ L ! .
order to classify burn depths is color, which is extremely in- 1. Without correcting the illumination profile and using
fluenced by the illumination. In hospitals the lighting condi- only three color patches, we calculate the initial matrix
tions can change depending on the room where the patient is. M that converts fronR GB under an unknown illumi-
Then, measured pixel values depend on the illuminants and nant toX'Y Z under DSO0.

with multiple illuminants the measured values cannot be ac- 2. In thei'th step, using the 240 color patches in the chart
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and the matrix M;_;, we calculate the profiles, sion of the burh healthy skin should appear in the image
Pri(xy), Pci(X,y), andPg(x,y), so that, for each  when possible, the background should be a green/blue sheet
patch, theR, G, B corrected with the profiles and mul-  (the ones used in hospitals, because as the blue/green color is
tiplied by M;_, are theX, Y, Z values specified by the  so different from the skin colors, the background can be easily
manufacturer of the color chart. That is, for each patch rejected by the segmentation algorithrihe flash must be on

k in the position(x,,yy) the following equation is per-  and the camera should be placed parallel to the burn. The

formed: parameters of the camera were set to: ISO speed 100, expo-
Pril [1R(X,Yi) Xk sure time 1/200 s and apertuffestop 20.
pG'. =| VG(x,yi) | (M)~ Y] Yy 1) In order to validate the acquisition protocol, a survey was
! -1 ' done?*?5 For this survey, 38 photographs of all etiologies,
Peil L1/B(X, Y Zy locati - ;
) ocations, and characteristics of the most frequent lesions
3. We calculate the three fourth order surfadeg;(x,y), were taken following the specified protocol. They were pre-

Pg.i(x,y), andPg (x,y), that match best the profiles  sented to a panel of 12 experts in burn diagnosis. The experts
Pri(X%Y), Pc.i(x,y), andPg;(x,y) calculated in step  had to answer about the certainty in diagnogis-5):

2. Previously, we have experimentally determined that a 1=minimal, 3=moderate, 5maximum, certainty. A mean of
fourth order surface adequately approximates the sensi-4.26 in sureness in diagnosis and 84.6% of diagnostic accu-
tivity of the camera and the nonuniformity of the flash racy was answered, whereas diagnostic accuracy of a trained
illumination altogether. plastic surgeon when looking live at the same 38 burn wounds

4. Using this profile, we calculate the matii4; that best ~ was 84.3%.
maps theR, G, B values into theX, Y, Z values specified
for all the patches in the color chart. To determine this

optimum M; the following mean square error is mini- .
b : 9 d 2.3 Burn Wound Segmentation

mized:
240 The segmentation approach used here is a supervised pixel-
2= (X = X)2+ (Y, = Y2+ (Z, —Z,)? based algorithm based on measures in the [C1E* v* color
€ k k K _ .
2408, " g t coordinate spacd.*u*v* andL*a*b* color representation
2 systems are called uniform systems because Euclidean dis-

whereX, , Yy, andZ, are theX,Y, andZvalues ofthe  tances between colors measured in these spaces are very
k'th color patch, in the positiorfx,,y,), specified by much correlated with color differences according to human
the manufacturer. perception. They are particularly useful in color image seg-
5. Repeat from step 2 until the mean square estoegins mentation of natural scenes using histogram-based tech-
to grow. niques, in which our method is included. They are slightly
different because of the different approaches to their formula-

It must be emphasized that the mathikis the product of tion. Nevertheless, both spaces are equally good in perceptual
two matrices: the transformation froRGBto XY Zunder an ~ uniformity and provide very good estimates of color differ-
unknown illuminant and the linear transformation to perform €nce (distance between two color vectorS. Therefore, we
the chromatic adaptation from an unknown illuminant to D50. could have chosen any of these two spaces, but we preferred

The matrix obtained with the proposed method is the L*u*v* one, because the color componeats and b*
do not depend on the luminance, and it is known that color
45 60 —19 perception is strongly influenced by the luminafte.

The following steps show the scheme proposed:
M=|24 93 —-23

3 37 39

when theR, G, B values are normalized to one. It should be 92.3.1  Selection of a small region in the burn wound
noted that this matrbM is specific for each camera, so cali-  py the user and preprocessing of the image

bration should be performed for every camera used. For a nonexpert physiciain fact, for most of the peoplet is

o easy to differentiate burnt skin from normal one. Therefore,

2.2.3  Acquisition protocol the burn wound will be segmented using the color information
The third problem consists of fixing the acquisition protocol of a 5X5 pixel area around the point that the user selects with
so that the photographs are useful for diagnosis. After fixing it the mouse.
we have validated its suitability. Before segmenting the image, it is convenient to prepro-

The acquisition protocol was developed by an interdisci- cess it in order to get more homogeneous regions eliminating
plinary group formed by burn specialized physicians and noise and small structures. To perform this task, an aniso-
techniciang* The main points of the acquisition protocol tropic diffusion is applied to the color imagé?® The aim of
were the following: distance between camera and patient the diffusion is to make the regions more homogeneous but
should be about 40-50 ciito fix this parameter, physicians preserving the edge information. In order to perform the an-
carried out a careful analysis of photographs taken of different isotropic diffusion, the approach of separating the diffusion of
burn wounds from different distances; in the end, they chose the chromatic and achromatic information was follo@eals
40-50 cm because they could distinguish texture from this is shown in Fig. 2. First, the image is converted ihtou* v*
distance and, at the same time, they usually had a global vi- color coordinate system accordingto
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Fig. 2 Diffusion filtering separating chromatic and achromatic infor-
mation.
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Computation ofu* andv* involves intermediatal’, v’,
Ug, andv quantities defined as

o 4X
Y= XT15v+ 32"
(4)
- oY
U T X+15Y+3Z°
Finally,
u*=13L*(u’—uyp),
(5

v*=13L* (v’ —vyg).

Yo, Ug, and vy correspond to the white reference point,

which depends on the illuminafib50 after the calibration

1
|VL*<x,y,t)l)2'
Yp

a(xy,t)= )

1|

The diffusion constanty, was selected as the 5% of the
maximum value of VL*(x,y,t)| at eacht, an artificial time
parameter that denotes the number of diffusion iterations,
which was fixed to 20.

The chromatic anisotropic diffusion is performed by apply-
ing Eq. (6) to the complex quantity?

%P(x,y,t)=div[a(x,y,t)VP(x,y,t)], (8)
whereVP(x,y,t) is®

VP(X,y,t)=[VC(Xx,y,t) +]CVH(X,y,t) Jexd jH (X,y,t)]
9

and separating real and imaginary parts of &j.it follows
that

d
EC=div(aVC)—aC|VH|2,
(10

J ) a
Eszlv(aVHHZEVC‘VH,
where the spatial and temporal dependencies have been omit-
ted for convenience.
To obtain the coefficient for the complex quantity? we
need to calculatéV P(x,y,t)|, which is

IVP(x,y,t)I=JIVC(x,y,t)|2+Cz(x,y,t)IVH(x,y,t)l(Zl-l)

2.3.2  Conversion to single channel image

In this step a gray scale image is obtained from the diffused
color image. In this gray scale image, differences between the
burnt skin selected by the user and other parts of the image
are emphasized. Based on the observation that doctors seg-
ment burn wounds by measuring differences among colors,
the selection box selected by the user is slid as a mask of size

From these coordinates, the hue and chroma component$X5 pixels along the image and, for each pixel in the image

are calculated abl = arctarfo*/u*) and C= /(u*)Z+ (v*)?,

under the center of the sliding mask, the following operation

respectively. A complex quantity is calculated that relates the iS performed?

hue and the chroma d@=C exp(jH).
The achromatic anisotropic diffusion, applied td, is

carried out by means of the discrete formulatfoof the par-

tial differential equation

%L*(x,y,t)=div[a(x,y,t)VL*(x,y,t)], (6)

where div andV denote the divergence and the gradient op-
erators, respectively, and(x,y,t) is a monotonically de-

n+A  m+A
fm=ax, 2, 2, delpiD.w(ipl,
(12
where MAX is max St ST de(p(i,j) w(i,j))), A

=(L—1)/2 with L=5, p(i,j) represents a pixel in the dif-
fused image to be segmentedLifiu*v* color spacew(i,j)
is a pixel of the mask selected by the user, akd-), the

creasing function of the image gradient magnitude called the Euclidean distance between pixgi§i,j) andw(i,j), is de-

conductance coefficieratnd is given by
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the valley is considered nonsignificant. These four steps are
illustrated in Fig. 3.

Once we have localized the main modes in the histogram,
we have to find the threshold which separates the two modes
closest to the left part of the histogram. This task is carried out
by applying Otsu’s methot, which is an adaptive threshold-
ing technique to split a histogram into two classes,with
gray leveld 1,...k], andc, with gray leveld k+1,...K]. Let
m; (k) andmy be the mean intensities for the clagsand for
the whole image, respectively. The between-class variance
was defined by Otsu as

a5(K) = @1(K) (Mg(K) = Mr)+ wa(K) (My(K) = m)?,

(14)
wherew; (k) andw,(k) are cumulative sums of the probabili-
ties in each class, that is,wl(k)=2}‘:1pj , wy(K)
=3 1Pj, and p;=X;/Npixeis, Wherex; is the number of

pixels with gray levef in an image andN,eis is the number

of pixels with gray levels from 1 t& in the whole image, that
is, the total number of pixels in the image. The optimal thresh-
old k is chosen so that the between-class variares maxi-
mized.

The election of Otsu’s method, among many existing
thresholding methods, is due to its simplicity in
computatiort? In fact, many modern segmentation algorithms
are based in Otsu’s method or use it for compar&ort:

Finally, by the application of a:83 median filter, the seg-
mentation result is improved by removing spurious points
(1—-4 pixel sizegl that is, points that have been segmented and
do not actually belong to the burn.

Fig. 3 Process of detecting the main peaks in the histogram. (a) De-
tection of the peaks in the histograms: peaks are marked with circles.
(b) Finding the peaks in the histogram of the peaks: peaks from the
original histogram are marked with dots and new peaks with circles.
(c) Rejection of nonsignificant peaks: peaks from Fig. (b) are marked
with dots and peaks selected in this step are marked with circles. (d)
Final peaks in the original histogram after the rejection of peaks with-
out a significant valley between them. In this case the three peaks in
the former step are accepted.

de(p(i,),w(i, i) ={[Ly (i) =Ly, 1%+ [up (i)
—up (i, )P+ (i)

L2102
—vy (i, ] 13 2.4 Classification

Once the burn is segmented, its depth must be estimated for
2.3.3 Thresholding operation and postprocessing classification purposes. It has been proven that physicians de-

The result of the above step is a gray-scale image where pix-términe the depth of a burn based on color perception, as well
els with lowest values are those in the region to be segmented @S 0N some texture aspects. As it has been previously said,
This image has been carefully designed to emphasize thel*U*v* space is a perceptually uniform color representation
burnt regions, and a thresholding operation should suffice to System. Also, the hue and the chroma coordinates are inti-
get a good segmentation. The histogram of this distance im- Mately related to the way human beings perceive chromatic-
age is multimodal so a method to find a threshold to select the ity- That is why, in this study, a set of descriptors formed by
mode in the left of the histogram should be found. This task is statistical moments of the histograms obtained for each coor-
carried out in two steps1) the peakgmaximum valuek of dinate of theL*u*v™* color space, as well as for the hue and
the different modes present in the histogram are found, andchroma image planes derived from them, have been used.
(2) the threshold which separates the two modes closest to theMore specifically, the descriptors chosen are: mean of light-
left of the histogram is calculated applying Otsu’s thesholding Ness(L*), mean of hueH), mean of chromdC), standard
method3° deviation of lightnesgo ), standard deviation of hugry),

To perform the first step, the following algorithm is ap- Standard deviation of chronfarc), mean ofu*, mean ofv ™,
plied to the histogram of the gray-scale imag#) find all standard deviation af* (o), standard deviation af* (o),
peaks in the histogram, that is, all the values in the histogram skewness of lightness, ), kurtosis of lightnesgk, ), skew-
which are higher than their two neighbo®) form a new  ness ofu*(s,), kurtosis ofu* (k,), skewness ob*(s,) and
curve with the peaks found in the previous step and then kurtosis ofv™ (k,).
select again the peaks in the new cur(@; remove nonsig- Afterwards it has been necessary to apply a descriptor se-
nificant peaks, i.e., those peaks whose values are less than 1%¢ction method to obtain the optimum set for the subsequent
of the maximum peak value are rejectéd) remove nonsig-  classification.
nificant valleys, that is, if two peaks have not a significant
valley between them we maintain only the highest of the two
peaks. To check if a valley is significant or not, the minimum 2.4.1
value between two peaks is found. If this minimum value is The discrimination power of these 16 features is analyzed
greater than 75% of the lowest peak out of the two peaks, thenusing the sequential forward selecti@®FS method and the

Feature selection
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025 T T \ y y T y till the five subsets have been used as validation sets. The final
classification error is calculated as the mean of the errors for
each XVAL run.
02r ] In Fig. 5 the evolution of the classification error is pre-
sented for both selection methods. It can be observed that
both curves coincide at the beginning and at the end, but then
015¢ 1 they separate obtaining a minimum classification error with
seven or eight descriptot&% erro) for the SFS method, and
six descriptorg1.6% erroy for the SBS method. In fact, this
01 N minimum error is again reached with 12 descriptors, although
it is reasonable to choose the set of six, because it will imply
less complexity in the neural network and shorter processing
time. The six descriptors provided by SBS method were cho-
sen as the best feature set: lightness, hue, standard deviation
of the hue componeny* chrominance component, standard
% ) 4 5 3 10 12 14 16 deviation of thev* component, and skewness of lightness.
Number of features included

Classification error

005¢ _y

Fig. 5 Evolution of the classification error for SFS method (@) and SBS
method (O). 2.4.2  Fuzzy-ARTMAP neural network

The classifier used is a Fuzagrmap neural network. This
type of network is based on the Adaptive Resonance Theory

sequential backward selectioSBS method™%¢ via the developed by Grossberg and Carpenter. FUgMAP is a
FuzzyARTMAP neural network which is detailed in the fol- supervised learning classification architecture for analog-
lowing subsection. value input pairs of patternié.The reasons for this choice are

SFS is a bottom-up search procedure where one feature athat FuzzyARTMAP offers the advantages of well-understood
a time is added to the current feature set. At each stage, thetheoretical properties, an efficient implementation, clustering
feature to be included in the feature set is selected among theproperties that are consistent with human perception, and a
remaining available features which have not been added to thevery fast convergence. It has also a track record of successful
feature set. So the new enlarged feature set yields a minimumuse in industrial and medical applicatiotisOther strong-
classification error comparing to adding any single feature. points of this type of neural network are the small number of
The algorithm stops when adding a new feature yields an design parameter@he vigilance parametep,<[0,1], and
increase of the classification error. The SBS is the top-down the selection parametes;>0), and that the architecture and
counterpart of the SFS method. It starts from the complete setinitial values are always the same, independent of the appli-
of features and, at each stage, the feature which shows thecation.
least discriminatory power is discarded. The algorithm stops ~ When the input parameters are the features selected by the
when removing another feature implies an increase of the SBS method above, the network classifies the burn depth of
classification error. the segmented region into five types: the first and the second

To apply these two methods, 50 X489 pixel images for belonging to superficial dermal depth, the third to deep der-
each burn appearance have been usee Fig. 4 As there mal, and the fourth and fifth to full thickness. So, the network
are five appearances, in all we have 250x49 pixel has six neurons in the input layer and five neurons in the
images. One photograph has been taken per burn wound. In output layer. In the FuzzyRTMAP neural network the archi-
general, we selected only one 489 pixel image per photo-  tecture is dynamic, so the number of neurons in the hidden
graph, unless there were different appearances in the samdayer is fixed during the training and according with the vigi-
wound. In this case, one 4319 image per appearance was lance parameter.
selected.

The selection performance is evaluated by fivefold cross
validation (XVAL ).* In this sense, the disadvantage of sensi-
tivity to the order of presentation of the training set, that the 3 Experimental Results
SBS and SFS methods pres&hts diminished. To perform  The images used to test the burn CAD tool were 62 digital
the XVAL method the 50 images per burn appearance are splitphotographs taken by physicians following the acquisition
into five disjoint subsets. Four of these subsgtst is, 40 protocol. All the images were diagnosed by a group of plastic
images per appeararjcgerve as a training set for the neural surgeons, affiliated with the burn unit of the Virgen del Roci
network, while the other onéen imagepis used as valida-  Hospital, from Seville(Spain. The assessments were vali-
tion set. Then, the procedure is repeated interchanging thedated one week later, as is the common practice when han-
validation subset with one of the training subsets, and so ondling burnt patients. The images were 153824 pixels and
they were stored as JPE@igh quality) files.
*The 250 449 pixel images are small images showing each one only The computer used was a Pentium IV, 1.7 GHz and 256
one burn appearancao healthy skin or backgroujidEach 4%49 pixel MB of random access memory. The average run time was 4
image has been validated by two physicians as belonging to a partlcularmin for an image and the programming tool wasTLAB 6.1

depth. Therefore, these 250 images form a database used only for the .
feature selection step. (The Mathworks Inc., Natick, Massachusgtts
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Table 1 Quantification of segmentation results (PPV: positive predic- be seen that the first parameter measures the over segmenta-
tive value; S: sensitivity). tion, which would be null if PPV were 1. Likewis& mea-
sures the under segmentation. In Table 1 the results for the 35
Image PPV S Image PPV S images are presented. As is shown in this table, almost all the
photographs are properly segmented. It must be emphasized
Image 1 0,9309 0,8093 Image 19 0,8303 0,9280 that, although the sensitivity tends to be only around 0.8, this

is because doctors tend to over segment the burnt region.

Image 20,9314 0,6969  Image 20 0,9627  0,9005 Therefore, this should not be interpreted as a poor perfor-

Image 30,9391 0,8684 Image 21 0,9196 0,7418 mance of the algorithm.
Figures 6—8 show the segmentation results for some im-
Image 40,9302 0,8324 Image 22 0,8752 00,7789 ages of the three types of depth. Figufasrepresent original
Image 5 0,614 09015 Image?23 09559 0,9725 images and_ Figs(b) represent the segmented ones. In the
segmented images we have marked with yellow color the seg-
Image 6  0,9741 0,8853 Image 24 0,8622 0,9107 mented region. In all the cases, the burn wound was seg-

mented correctly from the normal skin.
Image 7 0,8807 0,7297 Image 25 0,9082 0,9069

Image 8 0,8984 0,8108 Image 26 0,9646 0,7989 3.2 C(Classification Results

To test the classification part we employed the 62 images of
the database used for validati¢different from the one used
Image 10 0,9737 10,8206 Image 28 0,8711  0,8457 for training. The neural network was trained with the 250
49x49 pixel images previously cited. The training was per-

Image 9 0,9618 0,7772 Image 27 0,9320 0,9364

Image 11 0,7928 0,8190 Image 29  0,9569  0,9482 formed with p,=1 and «=0.001. At the end of the training

Image 12 0,9624 0,7452 Image 30 0,9571 0,8814 the Weights were fi.xed for the subsequent classification test.
For this test the six features were extracted from the seg-

Image 13 0,9806 0,7248 Image 31 0,9134 0,8318 mented part of the 62 images. Classification results are sum-

marized in Table 2. We have used 22 images with superficial
dermal burns, 18 with deep dermal burns, and 22 with full-
Image 15 0,9384 0,8457 Image 33 0,6990 0,7588 thickness burns. The average success percentage was 82.26%.
All superficial dermal burns misclassified were classified by
the network as deep dermal ones. All deep dermal burns were

Image 14 0,9424 0,7820 Image 32 0,9327 0,8698

Image 16 0,8327 0,8066 Image 34 09192 0,5174

Image 17 0,6420 0,8539 Image 35 0,7701  0,8530 misclassified as superficial dermal ones. And, in the case of
misclassified full-thickness burns, 80% of them were classi-
Image 18 0,8788 0,9646 Average 0,9023 0,8301 fied as superficial dermal and 20% as deep dermal.

4 Discussion and Conclusions

3.1 Segmentation Results The classification of burn depths based on visual inspection is
The segmentation algorithm proposed in this paper was testeda difficult task, which needs a lot of training. That is why in
with 35 out of the 62 images of the database. These 35 imagesburn related literature there is a constant search for objective
were manually segmented by five physicians. methods to determine the depth of a burn. A prototype of one
The reason of using 35 photographs instead of 62 is that, invasive technique is the acquisition of biopsies and their his-
although the protocol says that it should appear as healthy andological study for the burn depth diagno3isThis technique,
burnt skin, very often the extension of the burn wound is so although it can be considered as “gold standard,” is not ex-
large that there is only burnt skin in the image. Therefore, in empt from problems related to loss of dermis in the burn, to
these cases it is not meaningful to compare the segmentatiorthe existence of considerable variability depending on where
results performed by the physicians and by the algorithm.  the biopsy was acquired, and to the fact that this technique is
The segmentation gold standard was obtained by applyinga snapshot view of the lesion, apart from the residual scars
the voting method to the regions segmented by the five spe-provoked by the biopsy acquisition. These inconveniences
cialists. In other words, one pixel was considered to belong to have directed efforts towards the design of noninvasive pro-
the segmented region in the gold standard if most of the phy- cedures. Some noninvasive techniques analyze the perfusion
sicians had considered it in this way. of the burn wound based on the fact that tissue damage is
Once a gold standard was obtained, two parameters wereinversely proportional to the vascularization after the
calculated to measure the performances of the segmentatioresion?°~*>Nevertheless, in these procedures it is necessary to
algorithm. The first parameter was ttpositive predictive supply a vital colorant to the patient by intravenous method
value(PPV), which measures the ratio between the number of and it is essential to have an emergency system. Other experi-
pixels segmented by the algorithm which fit the segmentation mental techniques analyze the changes in optical properties of
gold standard and the total amount of pixels segmented. Thethe skin related to the changes of its vascularizatfoal-
second parameter is callegnsitivity (S), and it is the ratio though their application environment is, for the moment, ex-
between the number of pixels segmented by the algorithm clusively experimental. In another type of approximation to
which fit the segmentation gold standard and the total amountthe problem being studied, the remission-optical measurement
of pixels in the segmentation gold standard. Intuitively it can exploits the different spectral backscattering effects of burned
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(b)

Fig. 6 Segmentation result for a superficial dermal burn. (a) Original image where the selection made by the user is shown with an arrow. (b)
Segmented image.

(b)

Fig. 7 Segmentation result for a deep dermal burn. (a) Original image where the selection made by the user is shown with an arrow. (b) Segmented
image.

(a) (b)

Fig. 8 Segmentation result for a full thickness burn. (a) Original image, which has both superficial dermal burn (the red part) and full-thickness burn
(the creamy part). (b) Segmented image. In this case the user has made the selection in the creamy part in order that the algorithm segments all the
full-thickness part of the burn. It segments correctly all the full-thickness parts of the image regarding what physicians said.
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Table 2 Classification results.
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