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ABSTRACT 
Quantitative imaging biomarkers (QIBs) hold enormous potential to improve the efficiency of clinical trials that use 
standard-of-care CT imaging. Examples of QIBs include size, shape, intensity histogram characteristics, texture, 
radiomics, and more. There is, however, a well-recognized gap between discovery and the translation to practice of QIBs, 
which is driven in part by concerns about their repeatability and reproducibility in the diverse clinical environment. Our 
goal is to characterize QIB repeatability and reproducibility by using virtual imaging clinical trials (VICTs) to simulate 
the full data pathway. We start by estimating the probability distribution functions (PDFs) for patient-, disease-, treatment-
, and imaging-related sources of variability. These are used to forward-model sinograms that are reconstructed and then 
analyzed by the QIB under evaluation in a virtual imaging pipeline. By repeatedly sampling from the variability PDFs, 
estimates of the bias, variance, repeatability and reproducibility of the QIB can be generated by comparison with the 
known ground truth. These estimates of QIB performance can be used as evidence of the utility of QIBs in clinical trials 
of new therapies. 
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I. INTRODUCTION 
Clinical trials are a cornerstone of developing more effective cancer therapies. However, traditional clinical trials are often 
slow, expensive, and inefficient. Imaging of disease with standard-of-care CT plays a pivotal role in the management of 
patients with cancer and is used to measure endpoints in cancer drug trials to quantify efficacy in candidate compounds. 
There is a tremendous potential for quantitative imaging biomarkers (QIBs) to make clinical trials more efficient and 
informative. Examples of QIBs include size, shape, intensity histogram characteristics, and texture. Taking advantage of 
this potential is imperative since in the era of targeted therapies, studies will be smaller, more fractionated, with more 
expensive therapies. There is, however, a well-recognized gap between discovery and translation to practice for 
biomarkers in general and specifically for quantitative imaging biomarkers used in clinical trials. This gap arises for 
reasons that have been described including, among other items, a lack of data for testing and validation, a lack of rigor in 
the experimental design, inconsistent algorithm implementation, incomplete reporting, and a lack of appreciation for the 
requirements for adoption of quantitative imaging biomarkers. Addressing the lack of knowledge about the a priori 
distributions of random effects in imaging scenarios that should be evaluated, providing a rigorous methodology for 
evaluation, and ensuring pathways for adoption for all stakeholders can overcome these barriers. 

To do so we propose to build a measurement error model by using virtual imaging clinical trials (VICTs) [1] to simulate 
the entire data pathway from patient models through image generation to QIBs.  As a first step in this process, virtual 
imaging clinical trials (VICTs) are an emerging methodological adjunct to clinical trials using imaging. A VICT is 
essentially an extension to a clinical trial simulation in that the population of human subjects is replaced with a population 
of virtual digital subjects; imaging systems are replaced with physics-based virtual imaging simulators; and clinical 
interpretations are replaced with AI-derived image analyses. A VICT offers a feasible and efficient means to conduct 
experimentation in medical imaging by providing the practical ability to systematically assess and optimize a host of trial 
design factors and imaging parameters in the development and evaluation of imaging technologies, a task not possible 
through diagnostic clinical trials. While time, cost efficiency, and ethical feasibility are the main advantages of VICTs, 
VICTs offer one additional attribute; ground truth can be perfectly known and precisely controlled. As the condition of 
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the patient is defined a priori, a VICT makes it possible to ascertain how an image analysis metric represents the ground 
truth. This is a unique capability that can never be assured in clinical trials. Of course, a VICT cannot predict the impact 
of a novel therapy on a type of disease in a specific patient. However, VICTs can predict the range of outcomes to be 
expected for a pre-determined (i.e. plausible) domain of known variables, e.g. baseline tumor size and the subsequent 
shrinkage due to a postulated therapy. Over the last several years there has been a steady improvement of the realism of 
human and imaging system models. The growing maturation of VICTs as useful tools is demonstrated by multiple 
publications in mammography, CT, and PET, and even FDA approvals based on VICT studies of some aspects of image 
technology. 

Our goal is to use VICTs to characterize the accuracy of QIBs using standard-of-care CT in oncology trials. From this we 
can develop a guide for implementation in clinical trials and also a roadmap for adoption by regulatory bodies, industry, 
oncologists, cooperative oncology groups and professional societies. 

 

II. METHODS 
The virtual imaging pipeline component is the computational core, which uses the XCAT patient model [2] as an input to 
the CT-simulator CatSim [3]. The sources of variability can be grouped into categories along the pathway of the virtual 
imaging pipeline: (1) patient variability, (2) tumor characteristics, (3) CT acquisition, (4) image reconstruction, and (5) 
the QIB algorithm. 

 

 
Fig. 1. Data flow in the virtual imaging pipeline. 

 

Data available from the VELOUR clinical trial (NCT00561470) [6], one of the Vol-PACT cohorts [4], are used to 
define probability density functions. Some of the distributions of scanner- patient-, disease-, and imaging-related 
sources of variability are shown in Figs. 2 and 3. 
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Fig. 2. List of the CT scanner models used in the VELOUR trial as recorded in the DICOM image headers 

     

   
Fig. 3: Some of the sources of variability for the multicenter VELOUR trial data [6]. Shown are the average baseline tumor 
diameter, the number of tumors per patient at baseline, the number of standard-of-care CT scans per patient, the reconstruction 
pixel size and mAs per scan.

 

We used a VICT based on a two-arm trial (control and treatment) as shown in Fig. 4. that uses a baseline and follow-
up scan to determine reduction in average tumor volume. 

 
Fig. 4 Virtual imaging clinical trial (VICT) with multi-center baseline and follow-up CT scans. The impact of variability of AI-
derived quantitative imaging biomarkers (AI-QIBs) on study power as a function of patient numbers, effect size, and measurement 
type is assessed. 

For a range of effect sizes and trial sizes, we computed study power as a function of QIB variability. The error model 
used a generalized linear approach for bias and variance of a QIB. In this case we used prior tumor volume estimates 
(12.5% CoV, but over 25% has been reported). There were 1,000 simulations for each parameter combination to 
evaluate the QIB in terms of standard error, Type I error, and Type II error (i.e. 1 - study power). 

 

III. RESULTS 
Simulated data to be used as plausible ground truth was generated using correlated log-normal distributions modeled 
on the measured data (Fig. 5). Goodness of fit was checked with Q-Q plots and other statistical tests. 

Initial results of study power (Fig. 6) demonstrate the impact of QIB variance in clinical trials using multicenter 
standard-of-care CT imaging, which features heterogeneity in imaging systems across sites. 
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Fig. 5. Tumor size difference (i.e. follow-up - baseline) as a function of baseline tumor size. Left: Measured data from the VELOUR 
trial with 1,043 patients. Right: Simulated results from multivariate log-normal distributions displayed using the same scales. 

  

 
Fig. 6. Study power for the clinical trial illustrated in Fig. 4 showing the importance of understanding the variability of the QIB as a 
function of sample size and the true difference between arms. Top: impact of QIB coefficient of variation (CoV) and study size. Bottom: 
Importance of QIB CoV for small studies, i.e. targeted and/or expensive therapies. Data for 100 patients and effect size = 10% is 
common to both plots, showing the importance of controlling the CoV for a typical study power of 80%. 

 

IV. DISCUSSION 
Reliable smaller-n studies are imperative for clinical trials that are smaller, more fractionated, and use more expensive 
therapies. Understanding the application of QIBs to reduce the number of patients, while retaining study power (and 
knowledge of the expected study power) is important for these trials to be successful in the advancement of more effective 
therapies.  These methods are based on data from prior clinical trials, and in turn will provide feedback on the robustness 
of more effective QIBs and guidance for their use in clinical trials. 
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