Source Mask Optimization (SMO) describes the co-optimization of the illumination source and mask pattern in the
frequency domain. While some restrictions for manufacturable sources and masks are included in the process, the
resulting photomasks do not resemble the initial designs. Some common features of SMO masks are that the line edges
are heavily fragmented, the minimum design features are small and there is no one-to-one correspondence between
design and mask features. When it is not possible to link a single mask feature directly to its resist counterpart,
traditional concepts of mask defects no longer apply and photomask inspection emerges as a significant challenge. Aerial
Plane Inspection (API) is a lithographic inspection mode that moves the detection of defects to the lithographic plane.
They can be deployed to study the lithographic impact of SMO mask defects. This paper briefly reviews SMO and the
lithography inspection technologies and explores their applicability to 22nm designs by presenting SMO mask
inspection results. These results are compared to simulated wafer print expectations.
Contacts and VIAs are features whose integrity are very susceptible to reticle CD defects or in general, to defects that produce a change of total energy (flux) projected through the reticle. As lithography is extended beyond the 130nm node, the problem becomes more critical. Detecting and analyzing photomask critical dimension (CD) errors and semitransparent defects is vital for qualifying reticles to enable high IC wafer yield for the 90nm node. The current state of the art inspection methods are unable to meet the industry requirements for contact and via features. Using the TeraStarTM pattern inspection system's image computer platform, a new algorithm, TeraFluxTM, has been implemented and tested for the inspection of small 'closed' features. The algorithm compares the transmitted energy flux difference between a test contact (or a group of contacts) and a reference image for small closed features, such as, contacts, trenches, and cells on chrome and half-tone reticles. The algorithm is applicable to both clear and dark field reticles. Sensitivity characterization tests show that the new algorithm provides CD error detection to 6% energy flux variation with low false defect counts. We performed experiments to correlate the sensitivity performance of the new algorithm with wafer printability results. The results will be presented together with results of inspections results of programmed defect plates and production reticles.
With growing implementation of low k1 lithography on DUV scanners for wafer production, detecting and analyzing photomask critical dimension (CD) errors and semitransparent defects is vital for qualifying photomasks to enable high IC wafer yields for 130nm and 100nm nodes. Using the TeraStar pattern inspection system's image computer platform, a new die-to-database algorithm, TeraFlux, has been implemented and tested for the inspection of small "closed" features. The algorithm is run in die-to-database mode comparing the energy flux difference between reticle and the database reference for small closed features, such as, contacts, trenches, and cells on chrome and half-tone reticles. The algorithm is applicable to both clear and dark field reticles. Tests show the new algorithm provides CD error detection to 6% energy flux variation with low false defect counts.
We have characterized the sensitivity and false defect performance of the die-to-database energy flux algorithm with production masks and programmed defect test masks. A sampling of inspection results will be presented. Wafer printability results using the programmed defects on a programmed defect test reticle will be presented and compared to the inspection defect sensitivity results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.