We report a systematic photometric study of LCD based on quantum dot (QD) backlight, and find the optimal emission spectrum combination in terms of system efficiency and wide color gamut. A QD-based LCD has potential to achieve 120% AdobeRGB color gamut in CIE 1931 and 140% in CIE 1976 color space, while keeping the same energy efficiency as conventional backlights. Moreover, we present a transmissive color display based on voltage-stretchable liquid crystal droplet and quantum dot backlight. This polarizer-free display exhibits highly saturated colors, wide viewing angle and reasonably good contrast ratio. QD backlight allows LCD to display original colors with high fidelity, which makes LCD more competitive to organic LED. The prime time for QD-enhanced LCDs is near.
Due to the gradient of the phase shift as the wavelength in the reflection and transmission, the optical thin films
coatings will present the spatial dispersion effect. The new kinds of super-prism thin film devices can be realized by well
design interference effect inside of multilayer films to get the super-dispersion. The positive and negative spatial
dispersion are existed in side of coatings, and is very sensitive to the angle of incident and wavelength. The analysis
methods and the different kinds of spatial dispersion thin film filter devices and tunable spatial dispersion filter devices
are presented in the paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.