High power GaSb based type-I GaInAsSb/AlGaAsSb three quantum wells laser diodes emitting at 2.4 μm were optimized and fabricated. The laser wafer was grown with solid source Molecular Beam Epitaxy System. With optimizations of the epitaxial structure design and the ohmic contact, the operation voltage and the internal loss decreased; the internal quantum efficiency and output power increased. The internal quantum efficiency was determined about 80.1% and the internal loss was 12 cm-1 by measuring laser diodes with different cavity lengths. An uncoated 2-mm-long laser diode with 90-μm-wide aperture exhibited a threshold current density of 222 A/cm2 (74 A/cm2 per quantum well), a continuous wave output power of 232 mW and a quasi-continuous wave (1 kHz, 10 μs) output power of 1 W at room temperature.
2.X μm InGa(As)Sb/AlGaAsSb compressively strained quantum wells laser has been grown and fabricated. Antimonide laser with 1.5mm*90μm without AR/HR emitted 550mW of continuous wave output power at 2μm.And 2.4μm laser without AR/HR output 195mW at room temperature.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.