Freeform surfaces have been widely used in various imaging applications. The selection of the initial structure is particularly critical in the optical design of freeform imaging systems due to the significantly expanded solution space. Here, we introduce a method to identify an initial point for the optical design of four-mirror freeform reflective imaging systems. The initial design method for four-mirror freeform imaging systems leverages the optical property of conical surfaces and the linear-astigmatism-free condition, which is computationally simple, easily accessible and theoretically supported. The initial configurations prioritize the elimination of field-constant aberration and linear astigmatism, providing a robust foundation for subsequent optimization of freeform imaging systems. We generalize the design method for linear-astigmatism-free confocal systems to four-mirror confocal off-axis systems with “double-pass surface”. We present a design example in which the field-constant aberration and the linear astigmatism are eliminated, showcasing the effectiveness of the proposed method. The proposed approach proves capable of delivering a promising starting point for the development of four-mirror freeform off-axis reflective imaging systems.
Specially designed backlight systems can cast information from display screen to designated zone. Here we introduce an ultra-thin multi-directional backlight system. The main components of the system include microlens arrays, a Fresnel lens and a high-brightness liquid crystal display (LCD) panel. The proposed backlight system allows us to control the light propagation in a desired manner, and could be applied to three dimensional (3D) display.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.