Biaxial nematic liquid crystals have attracted much attention from both fundamental and application points of view,
because the fast response based on the rotation of the minor director is expected. So far, different molecular designs have
been proposed for the emergence of the biaxial nematic phase. Among that, we have been interested in applying "preorganization"
concept on generating the biaxiality. Dimeric liquid crystal compounds have been prepared in line with
this concept in which two mesogenic parts are linked by the biphenyl connecting group. The pre-organized dimmer
shows an anomalous textural change, for vertically-aligned and free-standing film samples, at the smectic C (SmC)-
nematic (N) phase transition, in which the Schlieren texture of the SmC changes into the other Schlieren texture of the N
phase. There are two possible explanations for this textural change, i.e., the occurrence of the director change at the
SmC-N phase transition or the emergence of biaxiality in the N phase. The electric-field-induced birefringence has also
been measured in detail for investigating the biaxial nature of the sample.
We investigated photochemical manipulation of physical properties and colloidal structures in liquid-crystal (LC) colloids containing azobenzene compounds. In a LC suspension where polymeric particles were dispersed in a host LC, we achieved photochemical control of light-scattering properties of the suspension. In a nematic phase, when the suspension was sandwiched with two glass plates, the film became opaque. This would be attributable to an appearance of both multidomain structures of LC alignment and mismatches of refractive indices between the materials. The opaque state turned into a transparent one when a nematic-to-isotropic phase transition was induced by the trans-to-cis photoisomerization of the azo-dye. This will result from a disappearance of both the multidomain structures and the refractive-index mismatches in the isotropic phase. The transparent film went back into the initial opaque film when the nematic phase was obtained by the cis-to-trans photoisomerization. In a LC emulsion in which glycerol or water droplets were dispersed in liquid crystals, we examined photochemical change of defect structures and inter-droplet distances by the photochemical manner. At the initial state, Saturn ring and hedgehog defects were formed around the droplets. For the glycerol droplets, we observed structural transformations between Saturn ring and boojums on irradiation with ultra-violet and visible light. For the water droplets, the inter-droplet distances varied by changing defect size on the irradiation. These phenomena would result from modulation of anchoring conditions of the droplets by the photoisomerization of the azo-dyes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.