In this paper, the hydrophobic plasma-activated bonding of GaAs/Si was studied. We systematically analyzed the effect of different power, gas flow rate and activation time of plasma to the roughness of GaAs and Si wafers. The roughness of GaAs wafers decreased with increasing of power and activation time of plasma. The roughness of Si wafers did not change significantly with increasing of power of plasma, and decreased first and then increased with increasing of gas flow rate of Ar in our experiment. The number of dangling bonds in the surface of GaAs and Si wafers was increasing with the activation time. When the activation time was 3 minutes, the GaAs/Si wafers were successfully bonded under different power of plasma. By scanning acoustic microscope (SAM) testing, it was found that when the power was 200W, the bonded GaAs/Si wafer had the best bonding interface. Furthermore, the GaAs/Si bonding internal mechanism by plasma-activated bonding method was analyzed by testing the chemical composition of the bonding interface.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.