The newly developed configuration included adopting the photosensitive electrode material TiOPc (titanyl phthalocyanine) to create electrowetting on dielectric (EWOD) mechanism. With this new development, the electric potential on the surface of TiOPc could be on-line real-time changed and defined spatially by illuminating spatially distributed light beam patterns. We tried to control the polarized droplets in our EWOD devices by using different light intensities. The experimental results clearly demonstrated that the relationship of light intensity and electrowetting phenomena can provide us with a feasible platform to construct optofluidic chip with potential autonomous manipulation of samples for point-of-care home medical detection applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.