Head and neck cancers overwhelmingly overexpress epidermal growth factor receptor (EGFR). This overexpression has been utilized for head and neck cancers using molecular targeted agents for therapy and cancer cell detection. Significant progress has been made in using EGFR-targeted fluorescent antibody and Affibody molecule agents for fluorescent guided surgery in head and neck cancers. Although success in achieving tumor-to-background ratio of 3-5 have been achieved, the field is limited by the non-specific fluorescence in normal tissues as well as EGFR specific fluorescence in the oral cavity. We propose that paired-agent imaging (PAI) could improve the contrast between tumor and normal tissue by removing the fluorescent signal arising from non-specific binding. Here, ABY-029 – an anti-EGFR Affibody molecule labeled with IRDye 800CW – and IRDye 680RD conjugated to Affibody Control Imaging Agent molecule (IR680-Affctrl) are used as targeted and untargeted control agents, respectively, in a panel of head and neck squamous cell carcinomas (HNSCC) to test the ability of PAI to increase tumor detection. Initial results demonstrate that binding potential, a value proportional to receptor concentration, correlates well to EGFR expression but experimental limitations prevented pixel-by-pixel analysis that was desired. Although promising, a more rigorous and well-defined experimental protocol is required to align ex vivo EGFR immunohistochemistry with in vivo binding potential and fluorescence intensity. Additionally, a new set of paired-agents, ABY-029 and IRDye 700DX, are successfully tested in naïve mice and will be carried forward for clinical translation.
Pancreatic ductal adenocarcinomas (PDAC) are notoriously difficult to treat and in general, molecular targeted therapies have failed even when the targeted protein is overexpressed in the tumor tissue. Genetic mutations in extracellular receptors and downstream signaling proteins (i.e., RAS signaling pathway) and convoluted intracellular cross-talk between cell signaling pathways are likely reasons that these promising therapies fail. Monitoring the complex relationship between intracellular protein signaling is difficult and to-date, standard techniques that are used (Western blot, flow cytometry, immunohistochemistry, etc.) are invasive, static and do not accurately represent in vivo structure-function relationships. Here, we describe the development of an in ovo avatar using patient derived tumors grown on the chicken chorioallantoic membrane (CAM) and the novel fluorescence-based Quantitative Protein Expression Tracking (QUIET) methodology to bridge the gap between oncology, genomics and patient outcomes. Previously developed paired-agent imaging, was extended to a three-compartment model system in QUIET, which utilizes three types of imaging agents: novel fluorophore conjugated cell permeable targeted and untargeted small molecule paired-agents, in addition to a tumor perfusion agent that is not cell membrane permeable. We have demonstrated the ability to quantify the intracellular binding domain of a trans-membrane protein in vitro using cell permeable fluorescent agents (erlotinib-TRITC and control isotype-BODIPY FL). In addition, we have demonstrated imaging protocols to simultaneously image up to 6 spectrally distinct organic fluorophores in in ovo avatars using the Nuance EX (Perkin Elmer) and established proof-of-principle intracellular and extracellular protein concentrations of epidermal growth factor receptor using QUIET and traditional paired-agent imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.