KEYWORDS: Technologies and applications, Current controlled current source, Electromagnetism, Resonators, Control systems, Metamaterials, Wavefronts, Polarization control, Microwave radiation, Flexible displays
Metasurfaces represent the most promising class of metamaterials for real applications, whereby arbitrary wavefront and polarisation control can be achieved using just a single sub-wavelength layer. Therefore, allowing tunability over their capabilities is the next step to consolidate them as technology devices for light control. In our work we propose a new platform for creating tunable microwave devices based on gradient metasurfaces. Our study shows that the integration of a patterned elastic substrate in the design of functional metasurfaces is an effective approach to enable control over their electromagnetic properties.
To demonstrate the new platform, we propose, design and experimentally realize a novel tuning mechanism that controls the focal length of an electromagnetic metasurface lens by exploiting the degree of freedom provided by the flexible substrate, which enables continuous elongation of the system. When such a metasurface is uniaxially stretched, the distance between embedded electromagnetic resonators increases, producing a change in the phase profile created by these resonators, and this leads to a change of the focal distance of the lens. Thus, the flexible metasurface displays a functionality that can be continuously controlled by unidirectional mechanical loading. We fully characterize the spherical-like aberration phenomenon which accompanies the tuning process. Finally, our study reveals that an equidistant separation between the resonators leads to reduced device performance of the operational metasurface and, therefore, the utilization of other degrees of freedom is mandatory if the efficiency needs to be preserved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.