The multi-object spectrograph (MOS) has been the benchmark for the current generation of astronomical spectrographs, valued for its ability to acquire the spectra of hundreds of objects simultaneously. In the last two decades, the digital micromirror device (DMD) has shown potential in becoming the central component of the MOS, being used as a programmable slit array. We have designed a seeing-limited DMD-based MOS covering a spectral range of 0.4 to 0.7 μm, with a field of view (FOV) of 10.5’ ×13.98’ and a spectral resolution of R ∼ 1000. This DMD-MOS employs all-spherical refractive optics, and a volume phase holographic (VPH) grism as the dispersive element for high throughput. In this paper, we present the optical design and optimization process of this DMD-MOS, as well as a preliminary wavelength calibration procedure for hyperspectral data reduction. Using simulated data of the DMD-MOS, a procedure was developed to measure hyperspectral imaging distortion and to construct pixel-to-wavelength mappings on the detector. An investigation into the relationships between DMD micromirrors and detector pixels was conducted. This DMD-MOS will be placed on a 0.5 m diameter telescope as an exploratory study for future DMD-based MOS systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.