Within the family of super-resolution (SR) fluorescence microscopy, single-molecule localization microscopies (PALM[1], STORM[2] and their derivatives) afford among the highest spatial resolution (approximately 5 to 10 nm), but often with moderate temporal resolution. The high spatial resolution relies on the adequate accumulation of precise localizations, which requires a relatively low density of bright fluorophores. Several methods have demonstrated localization at higher densities in both two dimensions (2D)[3, 4] and three dimensions (3D)[5-7]. Additionally, with further advancements, such as functional super-resolution[8, 9] and point spread function (PSF) engineering with[8-11] or without[12] multi-channel observations, extra information (spectra, dipole orientation) can be encoded and recovered at the single molecule level. However, such advancements are not fully extended for high-density conditions in 3D. In this work, we adopt sparse recovery using simple matrix/vector operations, and propose a systematic progressive refinement method (dubbed as PRIS) for 3D high-density condition. We also generalized the method for PSF engineering, multichannel and multi-species observations using different forms of matrix concatenations. Specifically, we demonstrate reconstructions with both double-helix and astigmatic PSFs, for both single and biplane settings. We also demonstrate the recovery capability for a mixture of two different color species.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.