Human-Object Interaction (HOI) detection is a fundamental task for understanding real-world scenes. In this paper, a graph model-based human-object interaction detection algorithm is proposed, which aims to make full use of the visual-spatial features and semantic information of human-object instances in the image, thereby improving the accuracy of interaction detection. Aiming at the characteristics of visual-spatial features and semantic information, we take the visual features of human and object instance boxes as nodes, and the corresponding spatial features of interaction relations as edges to construct an initial dense graph, and adaptively update the graph through the spatial and semantic information of instances. The V-COCO dataset is used to evaluate the algorithm, and the final accuracy is significantly improved, which proves the effectiveness of the algorithm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.