In subwavelength lithography, printed patterns on the silicon wafer suffer from geometric distortions and differ from the original design. These nonrectangular patterns can seriously affect electrical characteristics and circuit performances. We extend the verification of location-dependent weighting method and further propose three single equivalent gate length (EGL) extraction methods for representing each nonrectangular gate (NRG) transistor with a single EGL model. These methods are applied to sub-20-nm fully depleted silicon on insulator (FDSOI) circuits to predict the postlithography performances. An in-house extreme ultraviolet lithography simulation tool is utilized for nonrectangular pattern simulation. Shape information is imported to TCAD to construct three-dimensional nonrectangular FDSOI transistor models. The accuracy of the location-dependent weighting method and EGL extraction methods is verified with TCAD circuit simulations. Preliminary simulation results indicate that weighting factors can improve the accuracy of electrical characteristics estimation, especially in leakage current analysis. On average, the EGLs extracted from off-state only data, and from data lumping both off- and on-states, respectively, can each predict SRAM electrical characteristics with overall error <1 % , or a factor of 5 accuracy improvement over the EGLs extracted without the weightings. These methods could be used to simulate large-scale sub-20-nm FDSOI circuits with NRG transistors caused by nonideal optical effects.
In subwavelength lithography, the printed patterns on the silicon wafer suffer from geometric distortions and different from the original design. These non-rectangular patterns can affect electrical characteristics and circuit performances seriously. In this work, we extend the verification of location-dependent weighting method and further propose three single conventional equivalent gate length (EGL) extraction methods for representing each non-rectangular gate transistor with a single EGL model. These methods are applied to sub-20nm FDSOI circuits to predict the postlithography performances. An in-house Extreme Ultraviolet Lithography (EUVL) simulation tool is utilized for nonrectangular pattern simulation. Shape information is imported to TCAD to construct 3D non-rectangular FDSOI transistor models. The accuracy of the location-dependent weighting method and EGL extraction methods are verified with TCAD circuit simulations. A 2D EGL circuit simulation method in TCAD is proposed instead of 3D EGL method to reduce the simulation time required. Preliminary simulation results indicate that weighting factors can improve the accuracy of electrical characteristics estimation, especially in leakage current analysis. On average, the off-state EGL (EGLoff) with weightings is good enough. These methods could be used to simulate the non-rectangular transistors applied to sub-20nm FDSOI circuits including 6T-SRAM caused by non-ideal optical effects in industrial processes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.