Astronomical adaptive optics (AO) is a critical approach to enable ground-based diffraction-limited imaging and high contrast science, with the potential to enable habitable exoplanet imaging on future extremely large telescopes. However, AO systems must improve significantly to enable habitable exoplanet imaging. Time lag between the end of an exposure and end of deformable mirror commands being applied in an AO loop is now the dominant error term in many extreme AO systems (e.g., Poyneer et al. 2016), and within that lag component detector read time is becoming non-negligible (e.g., Cetre et al. 2018). This term will decrease as faster detector readout capabilities are developed by vendors. In complement, we have developed a modified Shack Hartmann Wavefront Sensor (SHWFS) to address this problem called the Focal-plane Actualized Shifted Technique Realized for a SHWFS (fastrSHWFS). The novelty of this design is to replace the usual lenslet array with a bespoke pupil-plane phase mask that redistributes the spot pattern on the detector into a rectangular array with a custom aspect ratio (in an extreme case, if the detector size can accommodate it, the array can be a single line). We present the fastrSHWFS concept and preliminary laboratory tests. For some detectors and AO systems, the fastrSHWFS technique can decrease the read time per frame compared to a regular SHWFS by up to 30x, supporting the goal of reduced AO lag needed to eventually enable habitable exoplanet imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.