Optical coherence tomography angiography (OCTA) is an extension of OCTA that allows for non-invasive imaging of the retinal microvasculature. OCTA imaging of adult retinal diseases is area of active research in ophthalmology as OCTA can provide insight into the pathogenesis of many retinal diseases. Like these adult diseases, pediatric diseases such as retinopathy of prematurity (ROP) have a primarily vascular pathogenesis. However, table top OCTA systems require compliant, seated subjects and cannot be used on infants and young children. In this manuscript we describe the development of a non-contact handheld OCTA (HH-OCTA) probe for imaging of young children and infants in the operating room. The probe utilizes a novel, diverging light on the scanner optical design that provides improved performance over a traditional OCT scanner design. While most handheld OCT probes are designed to be held by the side of the case or by a handle, our operators tend to prefer to grip probes by the tip of the probe for supine imagine. The ergonomics of the HH-OCTA probe were designed to match this grip. The HH-OCTA probe used a 200 kHz OCT engine, has a motorized stage that provides +10 to -10 D refractive error correction, and weighs 700g. Initial OCTA imaging was performed in 9 children or infants during exam under anesthesia. The HH-OCTA images provide visualization of the retinal microvasculature in both normal and pathological eyes.
Optical coherence tomography (OCT) allows for micron scale imaging of the human retina and cornea. Previous research and commercial intraoperative OCT prototypes have been limited to live B-scan imaging because they were based on previous-generation spectral domain OCT systems. Our group has developed and reported on an intraoperative microscope integrated OCT system based on a 100 kHz commercial swept source laser. This system is capable of live 4D imaging, and with a heads up display allows for dynamic intraoperative visualization of retinal structures, tool tissue interaction, and surgical maneuvers. OCT angiography (OCTA) is an emerging OCT technology that allows for imaging of retinal vasculature without the use of potentially harmful contrast agents. This structural information can provide insights into the state and development of a wide range of ophthalmic pathologies. The addition of OCTA into intraoperative OCT could allow for monitoring of changes in retinal vasculature during surgery and imaging of traditionally non-compliant patients. In this work we provide a brief update of intraoperative 4D MIOCT across a range of pathologies, and demonstrate intraoperative OCTA for the first time. To the best of knowledge, this is the first report of intraoperative OCTA, as well as the first OCTA images ever acquired in an infant.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.