KEYWORDS: Signal processing, Signal detection, Pulse signals, Analog electronics, Digital signal processing, Analog to digital converters, Ultrafast phenomena, Sensors, Pulsed laser operation, Photodetectors
Abstract: A digital correlation processor can only process a long duration signal by sampling and digitizing the signal thousands of times and correlate them in digital domain. We have developed a new type of analog RF-Photonic fiber-optic-recirculation-loop based correlation processor that can perform a correlation processing for a single ultra-short high-frequency signal. Using this technique, we built a RF-Photonic spectrum analyzer to perform analog-autocorrelation and Fourier transform and demonstrated a high-resolution spectrum obtained from a single 30ns-short two-tone ~30GHz signal pulse. This method revolutionizes the signal detection and processing technique by providing new capability of analyzing ultra-short signal or transient event.
In this talk, we present our recent findings on compound semiconductor-based nonlinear metasurfaces for all-optical signal processing. Nonlinear metasurfaces have revolutionized the field of nonlinear optics by enabling a radically different way to control light-matter interactions at the subwavelength scale. In this approach, nonlinear optical processes can be maximized by carefully choosing the shape, orientation, and arrangement of subwavelength-scale artificial atoms, called meta-atoms. By introducing Kerr nonlinearity from compound semiconductor materials, such as AlGaAs/GaAs, into a high-quality resonant metasurface, power requirement to achieve optical bistability can be greatly reduced. Optical bistability can has been actively studied due to its potential applications for all-optical switching and optical logic gates. In our research, we will utilize intensity-dependent refractive index in a semiconductor metasurface to realize refractive bistability for all-optical signal processing. Different design strategies will be discussed to excite quasi-bound waves with a high-quality factor and a small mode volume.
Unidirectional transmission is a fundamental function in signal processing. In electronic systems, simple semiconductor p–n diodes provide one-way transmission for electrical signals. In the optical domain, however, achieving one-way transmission is difficult because it requires breaking the time-reversal symmetry of light–matter interaction. Previously, magneto-optic effects have been successfully utilized to break the reciprocity of light–matter interaction. Here, we propose a meta-optic diode that supports nonreciprocal light transmission through excitation of asymmetric quasi-bound waves. The meta-optic diode consists of an ultrathin dielectric slab, patterned with two types of subwavelength resonator arrays. The proposed approach is based on the lifetime engineering of the resonant modes in the arrays and the inherent Kerr nonlinearity of the dielectric slab.
We report light trapping and guiding properties in resonant dielectric metastructures for chip-scale photonic integrated circuit applications. Recently, several optical phenomena in all-dielectric structures have shown a new way to tightly confine light through the engineering of resonant scattering. The engineered resonant light scattering in dielectric artificial subwavelength structures can be utilized as an efficient light coupling platform between free space and integrated photonic devices, and strongly tailor light-matter interactions for a variety of metasurface applications. In this paper, we present the design and numerical modeling of high-index subwavelength asymmetric resonant structures that can guide light for integrated photonic circuits. The metastructures reported here consist of all-dielectric two-dimensional optical antenna arrays patterned on a slab waveguide. Light coupling can be achieved by synchronizing the phase of the resonantly scattered light by the subwavelength antennas to that of the guided modes in the waveguide. Resonant light scattering by high-index subwavelength resonators can lead to light trapping through the excitation of quasi photonic bound states in the continuum. This unique feature can be used to selectively launch a guided mode into a photonic waveguide at a predetermined spectral band.
We report our development of Indium tin oxide (ITO) films with thicknesses greater than the typical optical telecommunication wavelength bands (~1550 nm) having epsilon-near-zero (ENZ) property at 1550 nm wavelength for the purpose of providing a new ENZ material platform for building high-contrast metastructure and metasurface devices. The films were grown using a high-power impulse magnetron sputtering (HiPIMS) tool, which allows for more control over film growth. A post-growth thermal annealing allowed the ITO film to reach the ENZ condition at the desirable wavelength. Our goal is to understand how deposition parameters and post deposition annealing conditions affect the film’s optical properties, therefore obtaining a controllable fabrication process for a desired optical property. Using spectroscopic ellipsometry to characterize the films, we show that the thick ITO films grown with HiPIMS exhibit ENZ behavior after post deposition annealing. The regime in which the material exhibits ENZ behavior is shown to be tunable within the wavelength range of 1500-1650 nm by varying the anneal temperature, anneal time, and oxygen exposure during anneal. In comparison with other thick ITO films grown with conventional pulsed DC magnetron sputtering, the optical constants of HiPIMS ITO films are shown to be much more constant with less variation throughout the bulk of the film. This result shows that these ITO films can be used to design a new family of opto-electronic devices that use ENZ ITO as the low-index base for high-contrast metasurface devices and as cladding for waveguides or optical cavities.
We present numerical modeling and experimental characterization of the photonic bound states in high-contrast Si-based subwavelength grating waveguide structures. The resonant modes in the grating waveguides show some of the unique features of the photonic bound states in the continuum: continuous narrowing of the resonance linewidth and cancellation of radiative waves. The calculated field distributions show strong internal field buildup around resonances. To verify our simulation results, a Si-based subwavelength grating waveguide was fabricated and experimentally characterized. The measured reflection spectra show two resonance peaks around λ0 = 1490 nm and λ0 = 1505 nm. According to the simulated results, these two peaks are located near a BIC condition. The captured infrared microscope images in the reflection measurement reveal the dynamical interaction between the incident light and the subwavelength grating waveguide. The demonstrated Si grating waveguides has potential to be used as highly efficient frequency-selective couplers between free-space optical waves to in-plane guided optical waves in existing Si integrated photonic circuits.
We report our in-house R&D efforts of designing and developing key integrated photonic devices and technologies for a chip-scale optical oscillator and/or clock. This would provide precision sources to RF-photonic systems. It could also be the basic building block for a photonic technology to provide positioning, navigation, and timing as well as 5G networks. Recently, optical frequency comb (OFC)-based timing systems have been demonstrated for ultra-precision time transfer. Our goal is to develop a semiconductor-based, integrated photonic chip to reduce the size, weight, and power consumption, and cost of these systems. Our approach is to use a self-referenced interferometric locking circuit to provide short-term stabilization to a micro-resonator-based OFC. For long-term stabilization, we use an epsilon-near-zero (ENZ) metamaterial to design an environment-insensitive cavity/resonator, thereby enabling a chip-scale optical long-holdover clock.
An RF-Photonic phased array antenna beamformer was previously demonstrated using cascaded fiber Bragg gratings with 1 x 2 couplers for true-time-delay beamforming. This work's focus is to design, build, and test an integrated Si-photonic beamforming circuit to replace the fiber-optics system, allowing for chip-scale beamformers with low size, weight, power, and cost. Several metastructure waveguides were designed to provide a strong slowlight effect near their transmission band edge. By tuning the wavelength near the band edge, tunable optical truetime delay is achieved. We report the design, simulation, fabrication and test of these high-contrast metastructure waveguides to provide group velocity variation against wavelength near the band-edge. Wavelength-tunable delay was verified using both an interferometric approach using an integrated Mach-Zehnder interferometer, and using a direct measurement of the true-time delay of an RF signal modulated onto a C-band optical carrier. We have also designed an integrated photonic beamforming circuit for a small array, including photodetectors, fabricated by AIM Photonics. Experimental test results for those integrated photonic circuits will be discussed. We will continue to improve our integrated photonic circuit to pursue larger array implementation. The goal is to further integrate this photonic circuit with an RF phase array antenna and demonstrate the scan of an RF beam by optical control.
Indium Tin Oxide (ITO) has shown significant potential in becoming a candidate for ε-near-zero (ENZ) metamaterial which can be a host material for EMNZ devices. However, the ENZ ITO material itself has not been thoroughly studied at a device level for several reasons. So far, only relatively thin (hundred nm scale) annealed ITO film has been studied for ENZ purposes. We put an initial effort in characterizing the 2 µm-thick ITO film in respect to its permittivity (ε). The melting point for indium is between 350 C and 400 C, so the annealing temperature falls into this window. A series of 2 µm-thick ITO films were deposited on a 3 µm-thick SiO2 on Si wafer that were annealed at different temperatures and times. These sample were further investigated by a cutting-edge ellipsometry technology. The optical constant depth profile at 1550 nm is measured for various annealing temperature and periods. The results show that both real and imaginary part of permittivity are non-uniform along the growth direction. Under a specific processing window, we are able to achieve a micron-scale of epsilon near-zero ITO film. We also conducted a TEM study to investigate the physical structure of the material. We find the evidence of different partial crystallization across the entire ITO film. The cross-section TEM with low magnification to show entire depth profile of the ITO from the SiO2 interface to the top surface. TEM images show evidence for the different crystal morphology across the ITO film, as the crystal grains varies for different regions of ITO.
The ability to tune the delay of an optical signal is a key component in photonics-based RF phased-array beamforming applications. Recent work has shown that high-contrast metastructure waveguides can be designed for a wide range of delay tuned by carrier injection or signal wavelength, enabling two-dimensional beam steering. In this work, we further explore the parameter space of these structures to maximize the delay change over optical wavelength while maintaining low insertion loss, with the goal of implementing phased-array beamforming in integrated photonic devices.
In this work, we have designed a novel Si based 1-dimensional high contrast meta-structure waveguide that has slow light effect as well as phase tunability using p-n junction. The goal is to use such waveguide to design active optical devices such as high frequency modulators and tunable filters for analog RF-photonics or data communication applications. The Si ridge waveguide has a pair of high contrast grating wings adhered to the waveguide core in the center. Grating bars at two sides of the waveguide are doped P and N-type respectively, while a p-n junction region is formed in the middle of the waveguide core. By applying a voltage to bias the p-n junction, one can sweep the free carriers to change the effective index of the waveguide as well as the dispersion property of the grating. This metastructure Si waveguide is ideal in the design of high frequency optical modulators since the slow light effect can reduce the modulator waveguide length, increase the modulation efficiency as well as compensate other nonlinearity factors of the modulator for analog applications.
We have designed new THz metastructure waveguides on Si wafers, aimed for low propagation loss and integration with
Si-based integrated circuits. The waveguide has a round cross-sectional hollow-core, surrounded by high reflectioncladding-
walls formed by high-contrast metastructure gratings. We developed a new fabrication technique to fabricate
such a 3D metastructure cage waveguide structure. The waveguide is built using the entire wafer thickness which
involves deep Si etching of periodically spaced holes and using isotropic undercut etching to create a connecting a line
of etched spheres in the middle of the wafer to form the waveguide’s hollow core, then deep etch the high-contrast
grating through the entire wafer thickness to form the cladding for the waveguide. We have successfully modeled and
fabricated such a waveguide structure. The next step is to experimentally test and characterize the waveguide in the THz
spectrum range.
We have developed a new type of Si-based 3D cage-like high-contrast metastructure waveguide with both “slow-light”
and low-loss properties, which has applications in providing a long time-delay line or a high Q cavity in chip-scale optoelectronic integrated circuits (OEIC). Traditional semiconductor optical waveguides always have high loss when used in a high dispersion (slow-light) region. A preliminary computational model has predicted that there is a slow-light and low propagation loss region within cage-like hollow-core waveguide formed by 4 high-contrast-gratings walls/claddings. Using our new processing technique, we fabricated several such waveguides on a Si wafer with different core sizes/shapes and different HCGs for 1550 operation wavelength. We have conducted experimental waveguide delay test measurements using a short optical pulse which indicate that the group velocity of these metastructure waveguides are in the range of 20- 30% of the speed of the light. Using a waveguide “cut-back” method, we have experimentally determined the propagation loss of these waveguides are in the range of 2-5dB/cm. We are also developing this type of high-contrast metastructure hollow-core waveguide for different operating wavelength/frequency such as THz for different applications.
We review our experimental and simulation-modeling studies on optoelectronic oscillators (OEOs). The OEO can have
an intrinsic quality factor, Q that is orders of magnitude higher than that of the best electronic oscillators (i.e. Poseidon).
However, our experimental results show that the OEO's current phase noise level is still worse than that of the Poseidon.
This is caused by many noise sources in the OEO which reduce the "loaded-Q" in the loop system. In order to mitigate
these noise sources, we have systematically studied such phenomena as the laser RIN, Brillouin and Rayleigh scattering
in the fiber, vibration, etc. These noise sources are convoluted in both optical and electrical domains by many different
physical effects; hence, it is very difficult to experimentally separate them, and only the dominant phase noise is
observed in each offset-frequency. Therefore, we developed a computational model to simulate our experimental
injection-locked dual-OEO system. By validating the model with our experimental results from both individual
components and OEO loops, we can start to trace the individual phase noise sources. The goal is to use the validated
model to guide our experiments to identify the dominant phase noise in each spectral region, and mitigate these noise
sources so that the OEO can reach its full potential.
We propose a novel hollow-core slow light waveguide using high contrast grating (HCG). Light propagates in air along
a path bounded by two HCG layers. A strong interaction between the light and the HCG leads to a large group index,
and thus the slow light effect. Waveguide loss and group index can be optimized separately by tuning the HCG and
waveguide parameters. High performance slow light is obtained with <0.1 dB/cm loss, >120 group index and >120 GHz
bandwidth.
We present a new type of Si-based, metastructure, hollow-core waveguide that has highly desirable "slow-light" and
low-loss properties for providing time-delays or high-Q cavities in chip-scale integrated OE circuits. This waveguide has
high contrast grating (HCG) metastructures as the 4 claddings/walls of a squared hollow-core structure. We have
successfully fabricated this 3-D metastructure waveguide using a new nano-fabrication techniques including one selfaligned,
cycled, modified Bosch etch process. Our computational modeling indicates that there is a slow-light region
with very little propagation loss. We will report our preliminary experimental waveguide test results for propagation loss
and group velocity.
We have designed and developed a new, simplified 3-dimensional (3D) Photonic Crystal (PhC) fabrication
technique that can be used to fabricate a nanoscale 3D structure from the 2D surface of a Si (or SOI) wafer with a
single lithography and self-aligned etching sequence. This technique produces deep trenches with controlled width
variation along the vertical direction. Using an alternating sequence of Bosch etches, a combined cryogenic etching
and/or chemical etching process, allows the Bosch etched layers to maintain the width defined by the mask, while
the cryogenic/chemical etched layer creates a lateral undercut that decreases the width beneath the surface. The
result is a 3D lattice structure with a stack of vertical square grids. This paper reports the experimental procedures
and results of fabrication of a 3D lattice structure that forms an array of hollow-core waveguides. We also compare
several different etch recipes for the attempt to produce a uniform structure with smooth walls. These techniques
will reduce overall fabrication cost, increase yield and are compatible with CMOS processing. Using this method,
one can fabricate a variety of Si/SOI based 3D PhC structures including hollow-core, high contrast grating,
waveguide arrays.
We report the first demonstration of a 10 GHz dual-fiber-loop Opto-Electronic Oscillator (OEO)
without RF-amplifiers. Using a recently developed highly efficient RF-Photonic link with RF-to-RF gain
facilitated by a high power laser, highly efficient optical modulator and high power phototectectors, we have
built an amplifier-less OEO that eliminates the phase noise produced by the electronic amplifier. The dual-loop
approach can provide additional gain and reduce unwanted multi-mode spurs. However, we have observed RF
phase noise produced by the high power laser include relative intensity noise (RIN) and noise related to the
laser's electronic control system. In addition, stimulated Brillouin scattering limits the fiber loop's length to
~2km at the 40mW laser power needed to provide the RF gain which limits the system's quality factor, Q. We
have investigated several different methods for solving these problems. One promising technique is the use of a
multi-longitudinal-mode laser to carry the RF signal, maintaining the total optical power but reducing the
optical power of each mode to eliminate the Brillouin scattering in a longer fiber thereby reducing the phase
noise of the RF signal produced by the OEO. This work shows that improvement in photonic components
increases the potential for more RF system applications such as an OEO's with higher performance and new
capabilities.
We have designed, assembled and tested a phase-array antenna using fiber Bragg gratings in the highly dispersive
transmission region as our tunable true-time delay (TTD) generators. The TTD generator is designed by cascading 29
identical fiber gratings and 1×2 fiber splitter pairs. Tapping from each fiber splitter allows us to steer our RF microwave
beam from a 30×4-element antenna by tuning the wavelength of a laser. The 10Ghz RF signal is superimposed upon a
laser beam by means of a LiNbO3 modulator. However, with a conventional modulator, the optical frequency spectrum
of the modulated beam consists of two sidebands on opposite sides of the optical carrier; all three of which may
experience very different time delays due to dispersion. This may have detrimental effects on time-delay sensitive
processes such as antenna beamforming. Therefore, we studied the use of single-sideband versus double-sideband
modulators in the transmitters of photonic phased array antenna. We focus in particular on the effect of the different
spectral profiles of single and double sideband modulators on beamforming when using the fiber Bragg gratings as TTD
generators. With very high dispersion in our fiber Bragg gratings close to the band edge, the absolute propagation times
are different for each sideband and the optical carrier. Therefore double sideband modulated signals will generate two
sets of separate delays in the same microwave signal which causes beam deterioration and increased side-lobes. We
demonstrated this theoretically and verified experimentally by comparing the antenna patterns generated by single-side-band
and by double sideband modulators.
We present the development of a fabrication technique for a semiconductor-based photonic crystal (PhC) nano-membrane device with reconfigurable active waveguides using micro-electro-mechanical systems (MEMS) technology. This device can be used as a basic building block for optoelectronic integrated circuits that can be reprogrammed for different functionalities such as switches, modulators, time delay lines, resonators, etc. The device is fabricated three-dimensionally on GaAs/Alx1GaAs/Alx2GaAs epitaxial layers on a GaAs substrate. The device has a top PhC membrane layer structure composed of hexagonal holes in a triangular lattice. Below that, a separate suspended bridge layer can insert a line of posts into the PhC holes to create a defect line. This MEMS feature can generate/cancel a section of the waveguide in the PhC platform, or (by partial removal) it can change the dispersion of the waveguide. Therefore, the same structure can be used as different types of devices. In this paper, we will discuss detailed fabrication processes for such a multi-layer 3D device structure, including e-beam lithography, inductively coupled plasma reactive ion etching, and multiple steps of regular photolithography and selective wet chemical etching. The unique processing sequence allows us to fabricate the multi-layer 3D device structure from one top surface without regrowth, wafer bonding, or access from the back surface. This simplifies the device processing and reduces the fabrication cost.
We present an application of fiber Bragg gratings as tunable optical delays in transmission for use as true-time-delay line in a RF-Photonic phased array antenna. Most delay line applications using fiber gratings require that they be used in reflection mode and they can provide only discrete variation of time delay. It also requires the use of bulky and expensive optical circulators. We have designed an optical true time delay array generator using fiber gratings in cascading transmission mode for such applications which significantly simplified the system and lowered the cost. A wavelength tunable laser is used as the light source. The laser light is modulated by an RF-microwave input signal, then enters into the optical true time delay array generator to provide a sequence of time delays Δt, 2Δt,...nΔt. The goal is to obtain large group delay Δt with low loss and with the capability of tuning Δt continuously by varying the wavelength of the laser. We combined an apodized grating profile, large index step and increased grating length to achieve our goal. We fabricated and tested the grating with about 100mm length which showed at least Δt=60 ps tunable time delay range. We have demonstrated the applicability of the transmission-mode fiber Bragg gratings in an optical true-time-delay type of phased array antenna.
We present our design and fabrication of a semiconductor based photonic bandgap (PBG) nano-membrane device with MEMS features. This device could be used as a basic building block for a reconfigurable optoelectronic integrated circuit that can be reprogrammed for different functionalities. We combine a PBG platform with a MEMS feature to build such a reconfigurable device. The device has a top PBG membrane layer structure composed of hexagon holes in a triangular lattice. Below that, a separate suspended bridge layer can insert a line of posts into the photonic crystal holes to create a defect line. This MEMS feature can generate/cancel a section of the waveguide in the PBG platform, or it can change the dispersion of the waveguide. Therefore, the same structure can be used as different types of devices such as switches, modulators, time delay lines, etc. This device is fabricated on GaAs/Alx1GaAs/Alx2GaAs/GaAs-substrate epi-layers grown by MBE. We have developed the fabrication technique for such a device using e-beam lithography, inductively coupled plasma (ICP) reactive ion etching, and multiple steps of regular photolithography and selective wet chemical etching. The fabricated PBG membranes are 60 nm to 300 nm thick, with a thin wall between the holes of ~120 nm. A line of mushroom shaped MEMS posts are inserted into the ~1 μm PBG holes. We are fine tuning each of these processing steps toward the fabrication of a workable device.
We report on our design and fabrication of a semiconductor based photonic bandgap nano-membrane device with MEMS features. This device could be used as a basic building block for a reconfigurable optoelectronic integrated circuit that can be reprogrammed for many different functionalities.
We have designed and demonstrated a low cost microwave-photonic phased-array antenna with a novel, simplified 16-channel optical true-time-delay array generator for microwave beamformign/steering. The true-time-delay array generator is built with simple optical path duplication architecture eliminating the need for optical switches, 1xN splitters, multiple lasers or Wavelength Division Multiplexing devices. Therefore, the cost is reduced by orders of magnitude as compared with other designs in the literature. To make a low cost demonstration, we have first fabricated the true-time-delay generator using free-space optics having mechanical displacemnt which can provide continuous time delays and power distribution for the array in the optical domain. A commercial 3 GHz laser transmitter and 16 photodetectors are used for optical-microwave link/transformation. The phased-array antenna has demonstrated a continuous scan/steering from -45° to 45° with reduced side lobes using a Dolph-Tschbyscheff array power distribution. As such, it provides an immediate solution, for the first time, to fabricate a realistic prototype photonic phased array antenna with a realistic price. We are also working on a long term solution which is to miniaturize the true-time-delay array generator by using optical MEMS technology and photonic bandgap structures so that our future true-time-delay array generator can be built in chip scale.
We report our recent development of a fabrication method for monolithic semiconductor waveguided optoelectronic integrated circuits (OEICs) using selective area epitaxy. Selective-area growth (SAG) may can produce an energy band gap variation in the waveguide structure within the same wafer. Therefore, devices such as amplifiers, modulators, and splitters that require different energy band gaps for the same operating wavelength may be fabricated monolithically to avoid the high cost and the signal degradation associated with the hybrid integration. However, epitaxial regrowth is still used in most SAG device fabrication. To further lower the cost and simplify the OEICs fabrication, we proposed a one growth and one waveguide fabrication method. This method requires a single metal-organic-chemical-vapor-deposition (MOCVD) growth of the whole InGaAsP multiple quantum well-waveguide core and InP bottom and top cladding layers on an InP substrate masked by parallel SiO2 strips. A localized shift of the band gap, that is induced by variations in epilayer thickness and composition, can be controlled by varying the width of the SiO2 strips and the gap between the strips. We have developed a special waveguide device processing technique for this type of non-uniform SAG materials. The challenge is to obtain the right energy bandgaps, right quantum well widths, right p-i-n electric fields in different waveguide device sections, and maintaining appropriate optical mode profile when the waveguides pass through the layer thickness and composition variations as well as bending curvatures. For the devices discussed here, extensive optical, electrical, and SEM characterizations have been performed to optimize the structure design and processing parameters. A few combinations of integrated waveguide splitters, modulators, and amplifiers have been designed and fabricated. Preliminary device testing has been performed.
We report on a low-cost monolithic integration method for fabricating semiconductor photonic integrated circuits using selective epitaxy without regrowth. To build a photonic circuit, active and passive devices are required with different energy band gaps. Selective-area growth that uses a mask of parallel SiO2 strips on a substrate induces variations in epilayer thickness and composition that result in localized shifts of the band gap. From our photoluminescence measurements on such selectively grown InGaAsP/InP multiple quantum well-waveguide materials, a band gap shift above 100 meV has been observed. We developed a waveguide device processing technique for this kind of selective epitaxy material. A few combinations of integrated waveguide splitters, modulators, and amplifiers were designed and fabricated. To test each individual device, we designed a new measurement method which determines the insertion loss and the intrinsic waveguide loss for a device in the middle of an integrated system. Preliminary results indicate few dB gain for a 0.6 mm long amplifier and approximately 10 dB contrast for a modulator operating near 1550 nm. Based on the initial data, new quantum well layer and waveguide structures have been designed to improve the performance in our next-generation devices.
Expanded mode alignment tolerant optical structures will play an important role in low-cost, large-scale packaging of optoelectronic devices. In this paper, we present two expanded mode structures for operation at 1.55 micrometers . Our devices use single epitaxial growth and conventional fabrication schemes. High butt-coupling efficiencies (> 40%) to a single mode fiber with relaxed alignment tolerances were achieved. The first of our devices uses adiabatic transformation over 500 micrometers . The second device uses resonant coupling over a much shorter region of 200 micrometers . The second scheme offers an interesting possibility for monolithic integration of active-passive components. We present the design and simulation results of such an integrated device.
Polarization controllable semiconductor optical waveguide material/devices have been design and studied using different type of strained quantum well heterostructures in the active region of the waveguide. A phase modulator devices has demonstrated a linear relative phase shift between the TE and TM polarizations with a V(pi ) of approximately 4 V. Another electro-absorption waveguide modulator structure has shown a bias tunable polarization mode so that the polarization properties can be actively controlled. We are also developing a monolithic integration techniques using selective epitaxial growth to achieve band gap variation within the same wafer and therefore, fabric integrated passive and active waveguide systems without high cost regrowth or device coupling.
Lift-off thin films of GaAs/AlGaAs multiple quantum wells (MQW) have been bonded to different transparent substrates that possess either direction-independent or direction-dependent thermal expansion. Duet to the differential thermal expansion between the thin film and the much thicker substrate, the MQW is under a thermally induced in-plane strain. By proper choice of the substrate crystallographic orientation and bonding temperature various forms of in-plane anisotropic strain have been realized. A detailed study of the anisotropy in the complex refractive index resulting from the in-plane anisotropic strain is presented. The electric field dependence of the anisotropic absorption and birefringence has also been studied.
Data from a series of experiments on porous silicon are presented, which provide important information about the luminescence processes in this promising new material. Raman spectra were correlated with PL spectra to clarify the significance of the silicon microcrystallites sizes on the photoluminescence (PL). The temperature dependence of the PL intensity, time constants, and peak PL energies was determined to reveal the role of more highly localized states such as defects and impurities. The dielectric constant was measured using angel resolved ellipsometry to relate quantum size effects to possible excitonic levels in the microcrystallites. The excitation power dependence of the PL was determined to be linear, indicating a one photon-one electron process is responsible for the excitation of the PL. The excitation spectrum of the PL was measured to provide information about the PL excitation process and the critical energy levels.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.