This paper reports progress on a type of ultrafast photoconductive source that can be driven at 1550 nm but exhibits the robustness of GaAs (e.g., low-temperature-grown GaAs) driven at 780 nm. The approach is GaAs doped heavily with Er (≈4x1020 cm-3 or 2% atomic-Er-to-Ga fraction) such that ErAs nanoparticles form spontaneously during epitaxial growth by MBE. The nanoparticles are mostly spherical with a diameter of a few nm while the packing density is estimated as high as ~2.2x1019/cm3. Yet, the Er-doped GaAs epilayer maintains excellent structural quality and smooth surface morphology. A photoconductive switch coupled to a 4-turn square spiral antenna is fabricated and characterized. At least ~40 μW average THz power is generated when the device is biased at 75 V and pumped with a 1550-nm 90-fs-short pulsed laser having average power ~85 mW. This research is significant for 1550-nm-technologycompatible, cost-effective THz sources.
We present measurements of sub-bandgap photoconductivity and photoconductive switches using GaAs doped heavily with Er such that nanoparticles of ErAs are formed. In addition to strong resonant absorption centered around 1550 nm, the material provides strong sub-bandgap photoconductivity and >> μW average power levels when fabricated into an efficient (square spiral) THz antenna and driven by a 1550- nm ultrafast fiber laser. Photo-Hall measurements prove that the predominant photocarrier is the electron and the linearity of the 1550-nm photocurrent (with laser power) suggests that the photoconductivity is “extrinsic”, not other possible mechanisms, such as two-photon absorption. These results have immediate relevance to the use of GaAs:Er switches as the transmitter in 1550-nm-driven THz imaging systems such as the “impulse imager” that we have successfully used for biomedical imaging applications.
This paper demonstrates a non-invasive method to determine the hydration level of human skin by measuring the reflectance of W-band (75-110 GHz) and Ka-band (26-40 GHz) radiation. Ka-band provides higher hydration accuracy (<1%) and greater depth of penetration (> 1 mm), thereby allowing access to the important dermis layer of skin. W-band provides less depth of penetration but finer spatial resolution (~2 mm). Both the hydration sensing concept and experimental results are presented here. The goal is to make a human hydration sensor that is 1% accurate or better, operable by mechanically scanning, and fast enough to measure large areas of the human body in seconds.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.