A particle-in-cell model is used to investigate the dust levitation phenomenon. A submicrometer-sized silicon dioxide particle lying on a silicon dioxide substrate is exposed to a low-energy electron beam and the flux of ions and electrons from a cold plasma. The combined effect of ion and electron accumulation between the particle and the substrate is reported. The results are of interest for dust mitigation in the semiconductor industry, the lunar exploration, and the explanation of the dust levitation.
We present performance metrics for the commercially available TEUS product line. TEUS-S is a high-brightness EUV LPP light source based on a fast rotating liquid metal target with EUV collection angle of 0.05sr. The TEUS-S100 and S400 models employing 100W and 400W of average laser power respectively have been characterized wi0th particular attention to the collector optics lifetime. It is estimated that 10% mirror reflectivity degradation will occur after 2 years for the TEUS-S100 and after 0.5 year for the TEUS-S400 in 24/7operation mode.
The TEUS-S400 source provides more than 30 mW of in-band (±1%) EUV radiation after the debris mitigation system.
The progress of EUVL and the introduction of HVM scanners demands advanced actinic metrology especially for the EUV mask supply chain. For stand alone field use reliable metrology sources for EUV inband emission around 13.5 nm are critically needed. For nanometer resolution the effective “inband brightness” is extremely important. Laser produced EUV sources (LPP) are cost effective with efficient energy use thus providing a reliable approach for real-life industrial applications. However, apart from the Cymer/ASML LPP scanner source no such source is available. One reason is that realizing a reliable tin droplet target is beyond the technical and financial scope of a metrology source. In this paper, we propose a path to make industrial laser produced plasma based EUV sources reliable and with easy renewable targets a reality.
An integrated model is developed to describe the hydrodynamics, atomic, and radiation processes that take place in extreme ultraviolet (EUV) radiation sources based on a laser-produced plasma with a distributed tin target. The modeling was performed using the return-to-zero line code-a numerical code for the simulation of EUV emission by hot dense plasmas. The purpose of the simulation is to evaluate the spectral characteristics of the radiation source, conversion efficiency, source size, evaporation rate of the target, energetic, and space distribution of debris (nanoparticles, neutrals, and ions). The advantages of a distributed target in comparison with a single droplet target are also discussed.
A new approach for discharge-produced plasma (DPP) extreme ultraviolet (EUV) sources based on the usage of two liquid metallic alloy jets as discharge electrodes has been proposed and tested. Discharge was ignited using laser ablation of one of the cathode jets. A system with two jet electrodes was tested at a repetition rate of 1 to 5 kHz with dissipated electrical power up to 20 kW. Radiating spectra, time characteristics, and conversion efficiency are similar to conventional DPP schemes with rotating wheels. In the first experiments, the Ga:Sn eutectic alloy, which is liquid at room temperature, was circulating in a closed loop. The high velocity of the jets (30 m/s) ensures a renewed electrode surface for every shot, for a repetition rate frequency of up to 30 to 50 kHz, and provides effective heat transportation from the discharge zone. Modeling and experiments demonstrate that the proposed scheme is able to dissipate up to 200 kW of electrical power without overheating the nozzles and tin surface. It was found that the flexible electrode configuration allows the channeling of essential parts of debris plasma in directions opposite to the EUV collector.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.