This will count as one of your downloads.
You will have access to both the presentation and article (if available).
This telescope configuration had been also selected for the PROBA-V payload, the successor of Vegetation, a multispectral imager flown on Spot-4 and subsequently on Spot-5 French satellites for Earth Observation and defence. PROBA-V, small PROBA-type satellite, will continue acquisition of vegetation data after the lifetime of Spot-5 expires in 2012.
The PROBA-V TMA optical design achieves a 34° FOV across track and makes use of highly aspherical mirrors. Such a telescope had become feasible due to the recently developed Single Point Diamond Turning fabrication technology. The telescope mirrors and structure are fabricated in aluminium and form an athermal optical system.
This paper presents the development of the compact wide FOV TMA, its implementation in PROBA-V multispectral imager and reviews optics fabrication technology that made this development possible. Furthermore, this TMA is being used in combination with a linear variable filter in a breadboard of a compact hyperspectral imager. Moreover, current technology allows miniaturization of TMA, so it is possible to use a TMA-based hyperspectral imager on a cubesat platform.
The challenge of this calibration development is to achieve better performance than the item under test using mostly standard items. Because only the subsystem spectrometer needs to be calibrated, the calibration facility needs to simulate the geometrical “behaviours” of the imaging system.
A trade-off study indicates that no commercial devices are able to fulfil completely all the requirements so that it was necessary to opt for an in home telecentric achromatic design. The proposed concept is based on an Offner design. This allows mainly to use simple spherical mirrors and to cover the spectral range. The spectral range is covered with a monochromator. Because of the large number of parameters to record the calibration facility is fully automatized.
The performances of the calibration system have been verified by analysis and experimentally. Results achieved recently on a free-form grating Offner spectrometer demonstrate the capacities of this new calibration facility.
In this paper, a full calibration facility is described, developed specifically for a new free-form spectro-imager.
View contact details
No SPIE Account? Create one