Purpose To accurately segment organs from 3D CT image volumes using a 2D, multi-channel SegNet model consisting of a deep Convolutional Neural Network (CNN) encoder-decoder architecture. Method We trained a SegNet model on the extended cardiac-torso (XCAT) dataset, which was previously constructed based on patient ChestโAbdomenโPelvis (CAP) Computed Tomography (CT) studies from 50 Duke patients. Each study consists of one low-resolution (5-mm section thickness) 3D CT image volume and its corresponding 3D, manually labeled volume. To improve modeling on such small sample size regime, we performed median frequency class balancing weighting in the loss function of the SegNet, data normalization adjusting for intensity coverage of CT volumes, data transformation to harmonize voxel resolution, CT section extrapolation to virtually increase the number of transverse sections available as inputs to the 2D multi-channel model, and data augmentation to simulate mildly rotated volumes. To assess model performance, we calculated Dice coefficients on a held-out test set, as well as qualitative evaluation of segmentation on high-resolution CTs. Further, we incorporated 50 patients high-resolution CTs with manually-labeled kidney segmentation masks for the purpose of quantitatively evaluating the performance of our XCAT trained segmentation model. The entire study was conducted from raw, identifiable data within the Duke Protected Analytics Computing Environment (PACE). Result We achieved median Dice coefficients over 0.8 for most organs and structures on XCAT test instances and observed good performance on additional images without manual segmentation labels, qualitatively evaluated by Duke Radiology experts. Moreover, we achieved 0.89 median Dice Coefficients for kidneys on high-resolution CTs. Conclusion 2D, multi-channel models like SegNet are effective for organ segmentations of 3D CT image volumes, achieving high segmentation accuracies.
Purpose: When conducting machine learning algorithms on classification and detection of abnormalities for medical imaging, many researchers are faced with the problem that it is hard to get enough labeled data. This is especially difficult for modalities such as computed tomography (CT) with potentially 1000 or more slice images per case. To solve this problem, we plan to use machine learning algorithms to identify abnormalities within existing radiologist reports, thus creating case-level labels that may be used for weakly supervised training on the image data. We used a two-stage procedure to label the CT reports. In the first stage, a rule-based system labeled a smaller set of cases automatically with high accuracy. In the second stage, we developed machine learing algorithms using the labels from the rule-based system and word vectors learned without supervision from unlabeled CT reports. Method: In this study, we used approximately 24,000 CT reports from Duke University Health System. We initially focused on three organs, the lungs, liver/gallbladder, and kidneys. We first developed a rule-based system that can quickly identify certain types of abnormalities within CT reports with high accuracy. For each organ and disease combination, we produced several hundred cases with rule-based labels. These labels were combined with word vectors generated using word2vec from all the unlabeled reports to train two different machine learning algorithms: (a) average of word vectors merged by logistic regression, and (b) recurrent neural network (RNN). Result: Performance was evaluated by receiver operating characteristic (ROC) area under the curve (AUC) over an independent test set of 440 reports for which those organs were manually labeled as normal or abnormal by clinical experts. For lungs, the performance was 0.796 for average word vector and 0.827 for RNN. Liver performance was 0.683 for average word vector and 0.791 for RNN. For kidneys, it was 0.786 for average word vector and 0.928 for RNN. Conclusion: It is possible to label large numbers of cases automatically. These rule-based labels can then be used to build a classification model for large numbers of medical reports. With word2vec and other transfer learning techniques, we can get a good generalization performance.
Many researchers in the field of machine learning have addressed the problem of detecting anomalies within Computed Tomography (CT) scans. Training these machine learning algorithms requires a dataset of CT scans with identified anomalies (labels), usually, in specific organs. This represents a problem, since it requires experts to review thousands of images in order to create labels for these data. We aim to decrease human burden at labeling CT scans by developing a model that identifies anomalies within plain-text-based reports that then could be further used as a method to create labels for models based on CT scans. This study contains more than 4800 CT reports from Duke Health System, for which we aim to identify organ specific abnormalities. We propose an iterative active learning approach that consists of building a machine learning model to classify CT reports by abnormalities in different organs and then improving it by actively adding reports sequentially. At each iteration, clinical experts review the report that provides the model with highest expected information gain. This process is done in real time by using a web interface. Then, this datum is used by the model to improve its performance. We evaluated the performance of our method for abnormalities in kidneys and lungs. When starting with a model trained on 99 reports, the results show the model achieves an Area Under the Curve (AUC) score of 0.93 on the test set after adding 130 actively labeled reports to the model from an unlabeled pool of 4,000. This suggests that a set of labeled CT scans can be obtained with significantly reduced human work by combining machine learning techniques and clinical experts' knowledge.
The purpose of this study was to develop a robust, automated multi-organ segmentation model for clinical adult and pediatric CT and implement the model as part of a patient-specific safety and quality monitoring system. 3D convolutional neural network (Unet) models were setup to segment 30 different organs and structures at the diagnostic image resolution. For each organ, 200 manually-labeled cases were used to train the network, fitting it to different clinical imaging resolutions and contrast enhancement stages. The dataset was randomly shuffled, and divided with 6/2/2 train/validation/test set split. The model was deployed to automatically segment 1200 clinical CT images as a demonstration of the utility of the method. Each case was made into a patient-specific phantom based on the segmentation masks, with unsegmented organs and structures filled in by deforming a template XCAT phantom of similar anatomy. The organ doses were then estimated using a validated scanner-specific MC-GPU package using the actual scan information. The segmented organ information was likewise used to assess contrast, noise, and detectability index within each organ. The neural network segmentation model showed dice similarity coefficients (DSC) above 0.85 for the majority of organs. Notably, the lungs and liver showed a DSC of 0.95 and 0.94, respectively. The segmentation results produced patient-specific dose and quality values across the tested 1200 patients with representative the histogram distributions. The measurements were compared in global-to-organ (e.g. CTDvol vs. liver dose) and organ-to-organ (e.g. liver dose vs. spleen dose) manner. The global-to-organ measurements (liver dose vs. CTDIvol: ๐ = 0.62; liver vs. global dโ: ๐ = 0.78; liver vs. global noise: ๐ = 0.55) were less correlated compared to the organ-to-organ measurements (liver vs. spleen dose: ๐ = 0.93; liver vs. spleen dโ: ๐ = 0.82; liver vs. spleen noise: ๐ = 0.78). This variation of measurement is more prominent for iterative reconstruction kernel compared to the filtered back projection kernel (liver vs. global noise: ๐ ๐ผ๐ = 0.47 vs. ๐ ๐น๐ต๐ = 0.75; liver vs. global dโ: ๐ ๐ผ๐ = 0.74 vs. ๐ ๐น๐ต๐ = 0.83). The results can help derive meaningful relationships between image quality, organ doses, and patient attributes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens usersโplease
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.