Graph-based dimensionality reduction techniques such as Laplacian Eigenmaps (LE), Local Linear Embedding (LLE), Isometric Feature Mapping (ISOMAP), and Kernel Principal Components Analysis (KPCA) have been used in a variety of hyperspectral image analysis applications for generating smooth data embeddings. Recently, Piecewise Flat Embeddings (PFE) were introduced in the computer vision community as a technique for generating piecewise constant embeddings that make data clustering / image segmentation a straightforward process. In this paper, we show how PFE arises by modifying LE, yielding a constrained ℓ1-minimization problem that can be solved iteratively. Using publicly available data, we carry out experiments to illustrate the implications of applying PFE to pixel-based hyperspectral image clustering and classification.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.