SBA-15 nanostructured materials were synthesized via hydrothermal treatment and were functionalized with 3-
aminopropyltriethoxysilane (APTES). The obtained samples were characterized by different techniques such as XRD,
BET, TEM, IR and DTA. After functionalization, it showed that these nanostrucrured materials still maintained the
hexagonal pore structure of the parent SBA-15. The model enzyms chosen in this study were lipase and keratinase.
Lipase was a biocatalyst for hydrolyzation of long chain triglycerides or methyl esters of long chain alcohols and fatty
acids; keratinase is a proteolytic enzyme that catalyzes the cleavage of keratin. The functionalized SBA-15 materials
were used to immobilize lipase and keratinase, exhibiting higher activity than that of the unfunctionalized pure silica
SBA-15 ones. This might be due to the enhancing of surface hydrophobicity upon functionalization. The surface
functionalization of the nanostructured silicas with organic groups can favor the interaction between enzyme and the
supports and consequently increasing the operational stability of the immobilized enzymes. The loading of lipase on
functionalized SBA-15 materials was higher than that of keratinase. This might be rationalized by the difference in size
of enzyms.
Nanostructured catalysts were successfully prepared by acidification of diatomites and the regeneration of used FCC
catalysts. The obtained samples were characterized by IR, XRD, SEM, EDX, MAS-NMR (27Al and 29Si), NH3-TPD and tested in catalytic pyrolysis of biomass (rice straw). The results showed that the similar bio-oil yield of 41,4% can be obtained by pyrolysis in presence of catalysts at 450°C as compared to that of the pyrolysis without catalyst at 550°C. The bio-oil yield reached a maximum of 42,55 % at the pyrolysis temperature of 500°C with catalytic content of 20%.
Moreover, by catalytic pyrolysis, bio-oil quality was better as reflected in higher ratio of H/C, lower ratio of O/C. This
clearly indicated high application potential of these new nanostructured catalysts in the production of bio-oil with low
oxygenated compounds.
Rice straw, a waste agro-byproduct, which is abundant lignocellulose products from rice production, is a renewable
energy sources in Vietnam. Bio-oil from rice straw is produced by thermal and catalytic pyrolysis using a fixed-bed
reactor with heating rate 15oC/min, nitrogen as sweeping gas with flow rate 120ml/min. Final temperature of the
pyrolysis reaction is a significantly influence on product yield. The gas yield increased and the solid yield decreased as
the pyrolysis temperature increasing from 400oC to 600oC. The bio-oil yield reached a maximum of 48.3 % at the
pyrolysis temperature of 550oC. Mesoporous Al-SBA-15 was used as acid catalyst in pyrolysis of rice straw. The
obtained results showed that, in the presence of catalyst, yield of gas products increased, whereas liquid yield decreased
and solid product remained the same as compared to the non-catalytic experiments. The effect of nanostructured
catalysts on the product yields and distribution was investigated.
Fe containing SBA-15 mesoporous material was successfully prepared by direct synthesis and post-synthesis (atomic
implantation) methods. The obtained Fe-SBA-15 samples were characterized by different techniques such as XRD, BET,
TEM and UV-Vis. It showed that for both methods, Fe containing SBA-15 samples have highly ordered hexagonal
nano-structure with large pore size. It revealed the existence of both Fe species: Fe-tetrahedral coordinated and Fe-highly
dispersed species. However, higher portion of Fe-highly dispersed species in the samples prepared post-synthesis
(atomic implantation) was found. The Fe-SBA-15 catalysts were tested in catalytic oxidation of phenol and red phenol.
The results indicated that both Fe-incorporated and Fe-highly dispersed species were active sites. However, the latter
exhibited higher activity compared to the former ones.
Titanium-containing SBA-15 mesoporous materials with Si/Ti molar ratios of 25, 50 and 100 (Ti-SBA-15) were
successfully prepared by direct synthesized method using P123 as surfactant. The samples were characterized by XRD,
BET, TEM and UV-Vis. It revealed at low Ti-loading (Si/Ti of 50-100), titanium was completely incorporated into
SBA-15 framework, whereas at high Ti-loading (Si/Ti of 25) titanium was partially incorporated into SBA-15
framework, one part of Ti existed as extra-framework Ti (anatase phase). For comparison, Ti impregnated on Si-SBA-15
(Ti/SBA-15) was also prepared by postsynthesis method. In (*)this case, titanium was well dispersed onto the surface of
SBA-15. The catalytic activities of Ti-SBA-15 with different Ti-content and Ti/SBA-15 samples were tested in the
photocatalytic oxidation of red-phenol and in the photocatalytic reduction of Cr(VI) to Cr(III). The catalytic results
showed that both the Ti-SBA-15 and Ti/SBA-15 solids are also the good catalysts for total photooxidation of red phenol.
Especially, the tetrahedral coordinated titanium can oxidize red phenol much deeper than well dispersed titanium
particles does. For photocatalytic reduction, the activities mainly depend on the number of Ti, not the state of Ti.
Fe-SBA-15 was successfully synthesized by hydrothermal treatment in one step . Different techniques such as XRD, BET, HRTEM, UV-vis have been used to characterize the Fe-SBA-15 samples. Obtained results have shown that the obtained Fe-SBA-15 samples have highly ordered hexagonal mesostructure with large pore size of about 64Å. Most Fe species in the Fe-SBA-15 were tetrahedrally coordinated. The sample exhibited high stability by calcination at high temperature to remove the template. The Fe-SBA-15 catalysts were tested in catalytic oxidation of phenol and photocatalytic oxidation of chlorophenol. The results indicated that Fe-SBA-15 exhibited the high catalytic activity in these reactions.
A novel mesoporous material Ti-MSU has successfully synthesized by hydrothermal treatment using nanoseed-TS-1 as precursors. The sample was characterized by different techniques such as: IR, XRD, BET, UV-Vis. The obtained results revealed that the product was highly ordered mesostructure with pore size of 24 Ao and the wall of crystalline nature. Ti-MSU was tested in the photocatalytic oxidation of chlorophenol. Ti-MSU sample showed much higher activity compared to that of TS-1 and P25 in the photocatalytic oxidation of orthochlorophenol.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.