Spectral reflectance of the eye fundus was evaluated in adult healthy patients through a fast visible and near-infrared multispectral fundus camera. Spectral signatures were analyzed for different ocular structures of the retina and the choroid.
We present a multispectral fundus camera that performs fast imaging of the ocular posterior pole in the visible and near-infrared (400 to 1300 nm) wavelengths through 15 spectral bands, using a flashlight source made of light-emitting diodes, and CMOS and InGaAs cameras. We investigate the potential of this system for visualizing occult and overlapping structures of the retina in the unexplored wavelength range beyond 900 nm, in which radiation can penetrate deeper into the tissue. Reflectance values at each pixel are also retrieved from the acquired images in the analyzed spectral range. The available spectroscopic information and the visualization of retinal structures, specifically the choroidal vasculature and drusen-induced retinal pigment epithelium degeneration, which are hardly visible in conventional color fundus images, underline the clinical potential of this system as a new tool for ophthalmic diagnosis.
Eye fundus photography routinely used in clinical practice is restricted to color imaging of the retina. In the last years, hyperspectral imaging has shown to be a powerful tool for the spectral analysis of biological tissue. In this study, we present a fully custom-made fast hyperspectral fundus camera based on light emitting diodes (LED) with 15 different wavelengths of emission and with extended spectral sensitivity towards the near infrared (NIR) (from 400 nm to 1300 nm), which allows imaging deeper retinal layers, including the choroid, than current clinical devices. These new features will be very useful for a better understanding of ocular diseases as well as aiding in their diagnosis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.