The influence of Q-switched pulsed Nd:YAG laser interference heating parameters on microstructure and magnetic properties of amorphous Fe80Si11B9 alloy was examined. Different laser pulse energy and a variable number of consecutive pulses were used. Results were compared with amorphous and conventionally annealed ribbons. Microstructural analysis, using light, scanning and transmission electron microscopy, was complemented by results of AFM and Mössbauer spectroscopy, as well as measurements of magnetic properties (vibrating sample magnetometer). Periodically distributed crystallized micro-areas, ~10 μm in diameter, in the amorphous matrix were produced by the laser treatment. Laser heating produced nanograin crystalline structure in the amorphous matrix. While after the conventional annealing – dendritic structure was observed. The magnetic hysteresis loop measurement showed that laser heating had no significant influence on soft magnetic properties. Magnetization measurements showed that the as-cast ribbon and laser light irradiated samples are magnetically soft materials. The results lead to the conclusion that the dots corresponding to the laser modified regions exhibit a perpendicular magnetic anisotropy. Magnetic force microscopy showed expanded magnetic structure in laser heated microareas, while the amorphous matrix did not give any magnetic signal.
Magnetic tunnel junction (MTJ) consists of at least two ferromagnetic layers, separated by an insulating tunnel barrier of amorphous aluminum oxide Al-O or monocrystalline (100)MgO. The magnetization direction of the free ferromagnetic layer (top electrode) is used for information storage. The tunnel resistance of the memory bit cell is either low or high, depending on the relative orientation of magnetizations (parallel or antiparallel) of the free layer with respect to the fixed layer (bottom electrode). The sense current flows perpendicular to the film plane of MTJ for the random access memory (MRAM) cell or reprogrammable magnetic logic (RML) system. The MRAM or RML bit cell is programmed by the magnetic field, generated by current flowing through conductors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.