The explosive growth of data-centric artificial intelligence applications calls for the next generation of optical interconnects for future hyperscale data centers and high-performance computing (HPC) systems. To unleash the full potential of dense wavelength-division multiplexing, we present the design and exploration of a novel transceiver architecture based on silicon photonic micro-resonators featuring a broadband Kerr frequency comb source and fabrication-robust (de-)interleaving structures. In contrast to the traditional single-bus architecture, our architecture de-interleaves the comb onto multiple buses before traversing separate banks of cascaded resonant modulators/filters, effectively doubling the channel spacing with each stage of de-interleaving. With a closed-form free spectral range (FSR) engineering technique guiding the micro-resonator design, the architecture is scalable toward hundreds of parallel channels—spanning much wider than the resonator FSRs—with minimal crosstalk penalty and thermal tuning overhead. This unique architecture, designed with co-packageability in mind, thus enables a multi-Tbps aggregated data rate with moderate per-channel data rates, paving the way for sub-pJ/b ultra-high-bandwidth chip-to-chip connectivity in future data centers and HPC systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.