This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Anomalous change detection is a two step process. Two co-registered images of a scene are first transformed to maximize the overall correlation between the images, then an anomalous change detector (ACD) is applied to the transformed images. The transforms maximize the correlation between the two images to attenuate the environmental differences that distract from the anomalous changes of importance.
Several categories of transforms with different optimization parameters are discussed and compared. One of two types of ACDs are then applied to the transformed images. The first ACD uses the difference of the two transformed images. The second concatenates the spectra of two images and uses an aggregated ACD. A comparison of the two ACD methods and their effectiveness with the different transforms is done for the first time.
View contact details
No SPIE Account? Create one