Nikon has developed a state-of-the-art wafer topography sensor dubbed S-meter-Z, which is based on an optical spectroscopy and novel correction function based on an optical model. The measurement repeatability is roughly 10 nm and has the potential to reach down to a few nm with additional improvements. Processed wafers with lithography patterns often have a complicated surface film structure, which induces the amplitude change and phase shift of the reflected light. This phase shift often causes errors in wafer topography measurement. The S-meter-Z minimizes these errors and provides accurate wafer geometry data for wafer process monitoring, which is essential for manufacturing today’s leading-edge microchip devices.
Advanced scanners need an extremely high accuracy wafer alignment system, and nowadays it is also necessary that the alignment marks occupy a smaller area in order to expand the available area for IC patterns. Therefore, narrower lines with a smaller pitch must form the alignment marks. In this paper, a higher Numerical Aperture (NA) and lower aberration alignment optical system are studied for these requirements. At first the small alignment marks are shown, and suitable NA in the optical system is then discussed. As a result, the necessity for higher NA is shown. As for low aberration, the necessary specification of wavefront aberration is discussed. Assuming it is possible to suitably select the NA and the illumination NA in the optical system, the results of simulation -- that simulate image signals and perform image processing -- are reported. These results show the optical system that has aberration causes position shift, so that the specification of wavefront aberration is estimated in order that the position shifts may be sufficiently small. To make sure that with such a strict specification the system will be possible, a trial optical system has been made. Finally the techniques of manufacturing and the results of evaluation are reported.
Advanced stepper or scanner needs extremely high accuracy alignment system. This alignment accuracy is mainly affected by the errors caused by mark deformations and by optical system. To improve the alignment accuracy of our wafer alignment system called 'FIA' we have developed a method called the 'FFO'. Our studies have already shown that FFO has the effect of reducing the errors caused by mark deformations. To examine the errors caused by optical system, new approaches are adopted. In the new approaches a simulation method and a suitable experimental are used. The simulation results by the new method, Spatial Frequency Analysis of Image, show the relation between defocus and the errors caused by optical system and the superiority of FFO. Suitable experimental system brings us the same results as the simulation method. As a result, FFO also has a positive effect on the errors caused by optical system. FIA with FFO is much more accurate alignment sensor for ULSI production.
Detecting position of the wafers such as after CMP process is critical theme of current and forthcoming IC manufacturing. The alignment system must be with high accuracy for any process. To satisfy such requirements, we have studied and analyzed factors that have made alignment difficult. From the result of the studies, we have developed new optical alignment techniques which improve the accuracy of FIA (alignment sensor of Nikon's NSR series) and examined them. The approaches are optimizing the focus position, developing an advanced algorithm for position detection, and selecting a suitable mark design. For experiment, we have developed the special wafers that make it possible to evaluate the influence of CMP processes. The experimental results show that the overlay errors decrease dramatically with the new alignment techniques. FIA with these new techniques will be much accurate and suitable alignment sensor for CMP and other processes of future generation ULSI production.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.