The control and the characterization of semiconductor very fine devices on a wafer are commonly performed by mean of a scanning electron microscope (SEM) to derive a critical dimension (CD) from a pair of parallel edges extracted from the images. However, this approach is often not very reliable when dealing with complex 2D patterns. An alternative is to use SEM contour technique to extract all the edges of the image. This method is more versatile and robust but before being implemented in a manufacturing environment, it must demonstrate that it can be matched well with traditional CD-SEM. Aim: The objective of this work is to present a method to evaluate and optimize the CD matching between a reference standard SEM-CD and SEM-Contours. Approach: After describing the metric used to assess the matching performance, we propose to screen some important influent parameters to give an evaluation of the best matching that we achieved with our experimental data. Results: After optimizing the matching calibration parameters and optimizing the selection of the best anchor pattern for the matching we could achieve a 3s-Total Measurement Uncertainty of 0.8 nm and 3.2 nm for 1D and 2D patterns. Conclusions: We established a method to achieve good matching performance that should facilitate the introduction of SEM contour in a manufacturing environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.