The Line Emission Mapper (LEM) is a Probe mission concept developed in response to NASA’s Astrophysics Probe Explorer (APEX) Announcement of Opportunity. LEM has a single science instrument composed of a large-area, wide-field X-ray optic and a microcalorimeter X-ray imaging spectrometer in the focal plane. LEM is optimized to observe low-surface-brightness diffuse X-ray emission over a 30′ equivalent diameter field of view with 1.3 and 2.5 eV spectral resolution in the 0.2−2.0 keV band. Our primary scientific objective is to map the thermal, kinetic, and elemental properties of the diffuse gas in the extended X-ray halos of galaxies, the outskirts of galaxy clusters, the filamentary structures between these clusters, the Milky Way star-formation regions, the Galactic halo, and supernova remnants in the Milky Way and Local Group. The combination of a wide-field optic with 18′′ angular resolution end-to-end and a microcalorimeter array with 1.3 eV spectral resolution in a 5′ × 5′ inner array (2.5 eV outside of that) offers unprecedented sensitivity to extended low-surface-brightness X-ray emission. This allows us to study feedback processes, gas dynamics, and metal enrichment over seven orders of magnitude in spatial scales, from parsecs to tens of megaparsecs. LEM will spend approximately 11% of its five-year prime science mission performing an All-Sky Survey, the first all-sky X-ray survey at high spectral resolution. The remainder of the five-year science mission will be divided between directed science (30%) and competed General Observer science (70%). LEM and the NewAthena/XIFU are highly complementary, with LEM’s optimization for soft X-rays, large FOV, 1.3 eV spectral resolution, and large grasp balancing the NewAthena/X-IFU’s broadband sensitivity, large effective area, and unprecedented spectral resolving power at 6 keV. In this presentation, we will provide an overview of the mission architecture, the directed science driving the mission design, and the broad scope these capabilities offer to the entire astrophysics community.
In this age of multi-messenger astronomy precipitated by the LIGO/Virgo observation of GW 170817, it is more important than ever to have instruments throughout the EM spectrum to perform follow-up observations. With the installation of an upgraded detector system and cross-dispersed ruled ZnSe grisms, and development of data reduction pipelines, the Rapid infrared IMAger Spectrometer (RIMAS) is ready to be at the frontier of this rapidly blossoming field. RIMAS is a near-infrared imager spectrometer (R≈25, R≈250, and R≈4000) designed to observe the afterglows of high-redshift GRBs in the Y, J, H and K bands once installed on the 4.3 meter Lowell Discovery Telescope located outside Flagstaff, AZ. In this paper, we discuss the performance of RIMAS’s high resolution spectrograph, which is enabled through the use of ruled ZnSe grisms working in high order echelle mode.
Here, we present an astrophotonic spectrograph in the near-IR H-band (1.45 -1.65 μm) and a spectral resolution (λ/δλ) of 1500. The main dispersing element of the spectrograph is a photonic chip based on Arrayed-Waveguide- Grating technology. The 1D spectrum produced on the focal plane of the AWG contains overlapping spectral orders, each spanning a 10 nm band in wavelength. These spectral orders are cross-dispersed in the perpendicular direction using a cross-dispersion setup which consists of collimating lenses and a prism and the 2D spectrum is thus imaged onto a near-IR detector. Here, as a proof of concept, we use a few-mode photonic lantern to capture the light and feed the emanating single-mode outputs to the AWG chip for dispersion. The total size of the setup is 50 cm x 30 cm x 20 cm3, nearly the size of a shoebox. This spectrograph will pave the way for future miniaturized integrated photonic spectrographs on large telescopes, particularly for building future photonic multi-object spectrographs.
The Rapid infrared IMAger Spectrometer (RIMAS) is designed to quickly follow-up near-infrared (NIR) transient events, gamma ray bursts in particular. One way RIMAS will accomplish this mission is with its echelle spectrograph (R≈4000) that contain the first ruled grisms to be used in cross-dispersed mode for NIR astronomy. These ZnSe grisms were recently fabricated at Lawrence Livermore National Lab. This paper discusses the testing and categorization of the echelle spectrographs containing these grisms by comparing the modeled spectra to experimental spectra. This testing resulted in verification of the echelle spectrograph's quality, resolution, and dispersion. Efforts to develop a data reduction pipeline and upgrade RIMAS's detectors are ongoing.
Astrophotonics is the new frontier technology to make suitable diffraction-limited spectrographs for the next generation of large telescopes. Astrophotonic spectrographs are miniaturized, robust and cost-effective. For various astronomical studies, such as probing the early universe, observing in near infrared (NIR) is crucial. Therefore, our research group is developing moderate resolution (R ~ 1500) on-chip photonic spectrographs in the NIR bands (J Band: 1.1-1.4 μm; H band: 1.45-1.7 μm). To achieve this, we use the concept of arrayed waveguide gratings (AWGs). We fabricate the device using a silica-on-silicon substrate. The waveguides on this AWG are 2 μm wide and 0.1 μm high Si3N4 core buried inside a 15 μm thick SiO2 cladding.
To make the maximal use of astrophotonic integration such as coupling the AWGs with multiple single-mode fibers coming from photonic lanterns or fiber Bragg gratings (FBGs), we require a multi-input AWG design. In a multi-input AWG, the output spectrum due to each individual input channel overlaps to produce a combined spectrum from all inputs. This on-chip combination of light effectively improves the signal-to-noise ratio as compared to spreading the photons to several AWGs with single inputs. In this paper, we present the design and simulation results of an AWG in the H band with three input waveguides (channels). The resolving power of individual input channels is ~1500, while the overall resolving power with three inputs together is ~500, 600, 750 in three different configurations simulated here. The device footprint is only 16 mm x 7 mm. The free spectral range of the device is ~9.5 nm around a central wavelength of 1600 nm. For the standard multi-input AWG, the relative shift between the output spectra due to adjacent input channels is about 1.6 nm, which roughly equals one spectral channel spacing. In this paper, we discuss ways to increase the resolving power and the number of inputs without compromising the free spectral range or throughput.
We present a high resolution spectrometer consisting of dual solid Fabry-Perot Interferometers (FPI). Each FPI is made of a single piece of L-BBH2 glass which has a high index of refraction n~2.07. Each is then coated with partially reflective mirrors to achieve a spectral resolution of R~30,000. Running the FPIs in tandem reduces the overlapping orders and allows for a much wider free spectral range and higher contrast. Tuning of the FPIs is achieved by adjusting the temperature and thus changing the FPI gap and the refractive index of the material. The spectrometer then moves spatially in order to get spectral information at every point in the field of view. We select spectral lines for further analysis and create maps of the line depths across the field. Using this technique we are able to measure the fluorescence of chlorophyll in plants and observe zodiacal light. In the chlorophyll analysis we are able to detect chlorophyll fluorescence using the line depth in a plant using the sky as a reference solar spectrum. This instrument has possible applications in either a cubesat or aerial observations to measure bulk plant activity over large areas.
The Rapid infrared IMAger-Spectrometer (RIMAS) is a near-infrared (NIR) imager and spectrometer that will quickly follow up gamma-ray burst afterglows on the 4.3-meter Discovery Channel Telescope (DCT). RIMAS has two optical arms which allows simultaneous coverage over two bandpasses (YJ and HK) in either imaging or spectroscopy mode. RIMAS utilizes two Teledyne HgCdTe H2RG detectors controlled by Astronomical Research Cameras, Inc. (ARC/Leach) drivers. We report the laboratory characterization of RIMAS's detectors: conversion gain, read noise, linearity, saturation, dynamic range, and dark current. We also present RIMAS's instrument efficiency from atmospheric transmission models and optics data (both telescope and instrument) in all three observing modes.
For the past forty years, optical fibres have found widespread use in ground-based and space-based instruments. In most applications, these fibres are used in conjunction with conventional optics to transport light. But photonics offers a huge range of optical manipulations beyond light transport that were rarely exploited before 2001. The fundamental obstacle to the broader use of photonics is the difficulty of achieving photonic action in a multimode fibre. The first step towards a general solution was the invention of the photonic lantern1 in 2004 and the delivery of high-efficiency devices (< 1 dB loss) five years on2. Multicore fibres (MCF), used in conjunction with lanterns, are now enabling an even bigger leap towards multimode photonics. Until recently, the single-moded cores in MCFs were not sufficiently uniform to achieve telecom (SMF-28) performance. Now that high-quality MCFs have been realized, we turn our attention to printing complex functions (e.g. Bragg gratings for OH suppression) into their N cores. Our first work in this direction used a Mach-Zehnder interferometer (near-field phase mask) but this approach was only adequate for N=7 MCFs as measured by the grating uniformity3. We have now built a Sagnac interferometer that gives a three-fold increase in the depth of field sufficient to print across N ≥ 127 cores. We achieved first light this year with our 500mW Sabre FRED laser. These are sophisticated and complex interferometers. We report on our progress to date and summarize our first-year goals which include multimode OH suppression fibres for the Anglo-Australian Telescope/PRAXIS instrument and the Discovery Channel Telescope/MOHSIS instrument under development at the University of Maryland.
Astrophotonics is the next-generation approach that provides the means to miniaturize near-infrared (NIR) spectrometers for upcoming large telescopes and make them more robust and inexpensive. The target requirements for our spectrograph are: a resolving power of 3000, wide spectral range (J and H bands), free spectral range of about 30 nm, high on-chip throughput of about 80% (-1dB) and low crosstalk (high contrast ratio) between adjacent on-chip wavelength channels of less than 1% (-20 dB). A promising photonic technology to achieve these requirements is Arrayed Waveguide Gratings (AWGs). We have developed our first generation of AWG devices using a silica-on-silicon substrate with a very thin layer of Si3N4 in the core of our waveguides. The waveguide bending losses are minimized by optimizing the geometry of the waveguides. Our first generation of AWG devices are designed for H band have a resolving power of ~1500 and free spectral range of ~10 nm around a central wavelength of 1600 nm. The devices have a footprint of only 12 mm × 6 mm. They are broadband (1450-1650 nm), have a peak on-chip throughput of about 80% (~-1 dB) and contrast ratio of about 1.5% (-18 dB). These results confirm the robustness of our design, fabrication and simulation methods. Currently, the devices are designed for Transverse Electric (TE) polarization and all the results are for TE mode. We are developing separate J- and H-band AWGs with higher resolving power, higher throughput and lower crosstalk over a wider free spectral range to make them better suited for astronomical applications.
The Rapid Infrared Imager/Spectrometer (RIMAS) is designed to perform follow-up observations of transient
astronomical sources at near infrared (NIR) wavelengths (0.9 - 2.4 microns). In particular, RIMAS will be used to
perform photometric and spectroscopic observations of gamma-ray burst (GRB) afterglows to compliment the Swift
satellite’s science goals. Upon completion, RIMAS will be installed on Lowell Observatory’s 4.3 meter Discovery
Channel Telescope (DCT) located in Happy Jack, Arizona. The instrument’s optical design includes a collimator lens
assembly, a dichroic to divide the wavelength coverage into two optical arms (0.9 - 1.4 microns and 1.4 - 2.4 microns
respectively), and a camera lens assembly for each optical arm. Because the wavelength coverage extends out to 2.4
microns, all optical elements are cooled to ~70 K. Filters and transmission gratings are located on wheels prior to each
camera allowing the instrument to be quickly configured for photometry or spectroscopy. An athermal optomechanical
design is being implemented to prevent lenses from loosing their room temperature alignment as the system is cooled.
The thermal expansion of materials used in this design have been measured in the lab. Additionally, RIMAS has a guide
camera consisting of four lenses to aid observers in passing light from target sources through spectroscopic slits. Efforts
to align these optics are ongoing.
The Rapid infrared IMAger-Spectrometer (RIMAS) is a rapid gamma-ray burst afterglow instrument that will provide photometric and spectroscopic coverage of the Y, J, H, and K bands. RIMAS separates light into two optical arms, YJ and HK, which allows for simultaneous coverage in two photometric bands. RIMAS utilizes two 2048 x 2048 pixel Teledyne HgCdTe (HAWAII-2RG) detectors along with a Spitzer Legacy Indium- Antimonide (InSb) guiding detector in spectroscopic mode to position and keep the source on the slit. We describe the software and hardware development for the detector driver and acquisition systems. The HAWAII- 2RG detectors simultaneously acquire images using Astronomical Research Cameras, Inc. driver, timing, and processing boards with two C++ wrappers running assembly code. The InSb detector clocking and acquisition system runs on a National Instruments cRIO-9074 with a Labview user interface and clocks written in an easily alterable ASCII file. We report the read noise, linearity, and dynamic range of our guide detector. Finally, we present RIMAS’s estimated instrument efficiency in photometric imaging mode (for all three detectors) and expected limiting magnitudes. Our efficiency calculations include atmospheric transmission models, filter models, telescope components, and optics components for each optical arm.
The Observational Cosmology Laboratory at NASA’s Goddard Space Flight Center (GSFC), in collaboration with the
University of Maryland, is building the Rapid Infrared Imager/Spectrometer (RIMAS) for the new 4.3 meter Discovery
Channel Telescope (DCT). The instrument is designed to observe gamma-ray burst (GRB) afterglows following their
initial detection by the Swift satellite. RIMAS will operate in the near infrared (0.9 – 2.4 microns) with all of its optics
cooled to ~60 K. The primary optical design includes a collimator lens assembly, a dichroic dividing the wavelength
coverage into the “YJ band” and “HK band” optical arms, and camera lens assemblies for each arm. Additionally, filters
and dispersive elements are attached to wheels positioned prior to each arm’s camera, allowing the instrument to quickly
change from its imaging modes to spectroscopic modes. Optics have also been designed to image the sky surrounding
spectroscopic slits to help observers pass light from target sources through these slits. Because the optical systems are
entirely cryogenic, it was necessary to account for changing refractive indices and model the effects of thermal
contraction. One result of this work is a lens mount design that keeps lenses centered on the optical axis as the system is
cooled. Efforts to design, tolerance and assemble these cryogenic optical systems are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.