SignificanceSpectroscopic single-molecule localization microscopy (sSMLM) takes advantage of nanoscopy and spectroscopy, enabling sub-10 nm resolution as well as simultaneous multicolor imaging of multi-labeled samples. Reconstruction of raw sSMLM data using deep learning is a promising approach for visualizing the subcellular structures at the nanoscale.AimDevelop a novel computational approach leveraging deep learning to reconstruct both label-free and fluorescence-labeled sSMLM imaging data.ApproachWe developed a two-network-model based deep learning algorithm, termed DsSMLM, to reconstruct sSMLM data. The effectiveness of DsSMLM was assessed by conducting imaging experiments on diverse samples, including label-free single-stranded DNA (ssDNA) fiber, fluorescence-labeled histone markers on COS-7 and U2OS cells, and simultaneous multicolor imaging of synthetic DNA origami nanoruler.ResultsFor label-free imaging, a spatial resolution of 6.22 nm was achieved on ssDNA fiber; for fluorescence-labeled imaging, DsSMLM revealed the distribution of chromatin-rich and chromatin-poor regions defined by histone markers on the cell nucleus and also offered simultaneous multicolor imaging of nanoruler samples, distinguishing two dyes labeled in three emitting points with a separation distance of 40 nm. With DsSMLM, we observed enhanced spectral profiles with 8.8% higher localization detection for single-color imaging and up to 5.05% higher localization detection for simultaneous two-color imaging.ConclusionsWe demonstrate the feasibility of deep learning-based reconstruction for sSMLM imaging applicable to label-free and fluorescence-labeled sSMLM imaging data. We anticipate our technique will be a valuable tool for high-quality super-resolution imaging for a deeper understanding of DNA molecules’ photophysics and will facilitate the investigation of multiple nanoscopic cellular structures and their interactions.
Significance: Single-molecule localization-based super-resolution microscopy has enabled the imaging of microscopic objects beyond the diffraction limit. However, this technique is limited by the requirements of imaging an extremely large number of frames of biological samples to generate a super-resolution image, thus requiring a longer acquisition time. Additionally, the processing of such a large image sequence leads to longer data processing time. Therefore, accelerating image acquisition and processing in single-molecule localization microscopy (SMLM) has been of perennial interest.
Aim: To accelerate three-dimensional (3D) SMLM imaging by leveraging a computational approach without compromising the resolution.
Approach: We used blind sparse inpainting to reconstruct high-density 3D images from low-density ones. The low-density images are generated using much fewer frames than usually needed, thus requiring a shorter acquisition and processing time. Therefore, our technique will accelerate 3D SMLM without changing the existing standard SMLM hardware system and labeling protocol.
Results: The performance of the blind sparse inpainting was evaluated on both simulation and experimental datasets. Superior reconstruction results of 3D SMLM images using up to 10-fold fewer frames in simulation and up to 50-fold fewer frames in experimental data were achieved.
Conclusions: We demonstrate the feasibility of fast 3D SMLM imaging leveraging a computational approach to reduce the number of acquired frames. We anticipate our technique will enable future real-time live-cell 3D imaging to investigate complex nanoscopic biological structures and their functions.
Laser based radio communication system, i.e. OptoRadio, using Orthogonal M-ary PSK Modulation scheme is presented in this paper. In this scheme, when a block of data needs to be transmitted, the corresponding block of biorthogonal code is transmitted by means of multi-phase shift keying. At the receiver, two photo diodes are cross coupled. The effect is that the net output power due to ambient light is close to zero. The laser signal is then transmitted only into one of the receivers. With all other signals being cancelled out, the laser signal is an overwhelmingly dominant signal. The detailed design, bit error correction capabilities, and bandwidth efficiency are presented to illustrate the concept.
Free space laser communications provides wide bandwidth and high security capabilities to cellular backhaul network in order to successfully accomplish data communication between cell sites and NOC (Network Operation Center). For this application, an optical receiver is a critical component and needs to be designed to operate in sunlight and other ambient noise environments while providing reliable data transmission. In this paper, a method of Free Space Laser Communication along with a differential optical receiver is presented for the backhaul solution of 5G networks that provides high capacity, reliability, less deployment cost, and long distance reach. At the receiver, two photo diodes are cross coupled. The effect is that the net output power is close to zero. The laser signal is then transmitted only into one of the receivers. With all other signals being cancelled out, the laser signal is an overwhelmingly dominant signal. In the proposed configuration, two signals generating photo-receptors are arranged such that when they are opposed to one another, the effect is a cancellation, if and only if the both photo-receptors receive the same amount of input.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.