Spectral CT is an emerging modality that uses a data acquisition scheme with varied spectral responses to provide enhanced material discrimination in addition to the structural information of conventional CT. Existing clinical and preclinical designs with this capability include kV-switching, split-filtration, and dual-layer detector systems to provide two spectral channels of projection data. In this work, we examine an alternate design based on a spatialspectral filter. This source-side filter is made up a linear array of materials that divide the incident x-ray beam into spectrally varied beamlets. This design allows for any number of spectral channels; however, each individual channel is sparse in the projection domain. Model-based iterative reconstruction methods can accommodate such sparse spatialspectral sampling patterns and allow for the incorporation of advanced regularization. With the goal of an optimized physical design, we characterize the effects of design parameters including filter tile order and filter tile width and their impact on material decomposition performance. We present results of numerical simulations that characterize the impact of each design parameter using a realistic CT geometry and noise model to demonstrate feasibility. Results for filter tile order show little change indicating that filter order is a low-priority design consideration. We observe improved performance for narrower filter widths; however, the performance drop-off is relatively flat indicating that wider filter widths are also feasible designs.
Dual energy computed tomography (DE CT) is a promising technology for the assessment of bone compositions. One of potential applications involves evaluations of fracture healing using longitudinal measurements of callus mineralization. However, imaging of fractures is often challenged by the presence of metal fixation hardware. In this work, we report on a new simultaneous DE reconstruction-decomposition algorithm that integrates the previously introduced Model-Based Material Decomposition (MBMD) with a Known-Component (KC) framework to mitigate metal artifacts. The algorithm was applied to the DE data obtained on a dedicated extremity cone-beam CT (CBCT) with capability for weight-bearing imaging. To acquire DE projections in a single gantry rotation, we exploited a unique multisource design of the system, where three X-ray sources were mounted parallel to the axis of rotation. The central source provided high energy (HE) data at 120 kVp, while the two remaining sources were operated at a low energy (LE) of 60 kVp. This novel acquisition trajectory further motivates the use of MBMD to accommodate this complex DE sampling pattern. The algorithm was validated in a simulation study using a digital extremity phantom. The phantom consisted of a water background with an insert containing varying concentrations of calcium (50 – 175 mg/mL). Two configurations of titanium implants were considered: a fixation plate and an intramedullary nail. The accuracy of calcium-water decompositions obtained with the proposed KC-MBMD algorithm was compared to MBMD without metal component model. Metal artifacts were almost completely removed by KC-MBMD. Relative absolute errors of calcium concentration in the vicinity of metal were 6% - 31% for KC-MBMD (depending on the calcium insert and implant configuration), compared favorably to 48% - 273% for MBMD. Moreover, accuracy of concentration estimates for KC-MBMD in the presence of metal implant approached that of MBMD in a configuration without implant (6%-23%). The proposed algorithm achieved accurate DE material decomposition in the presence of metal implants using a non-conventional, axial multisource DE acquisition pattern.
Spectral CT is an emerging modality that permits material decomposition and density estimation through the use of energy-dependent information in measurements. Direct model-based material decomposition algorithms have been developed that incorporate statistical models and advanced regularization schemes to improve density estimates and lower exposure requirements. However, understanding and control of the relationship between regularization and image properties is complex with interactions between spectral channels and material bases. In particular, regularization in one material basis can affect the image properties of other material bases, and vice versa. In this work, we derived a closed-form set of local impulse responses for the solutions to a general, regularized, model-based material decomposition (MBMD) objective. These predictors quantify both the spatial resolution in each material image as well as the influence of regularization of one material basis on other material images. This information can be used prospectively to tune regularization parameters for specific imaging goals.
Colorectal cancer is the second leading cause of cancer deaths in the United States and causes over 50,000 deaths annually. The standard of care for colorectal cancer detection and prevention is an optical colonoscopy and polypectomy. However, over 20% of the polyps are typically missed during a standard colonoscopy procedure and 60% of colorectal cancer cases are attributed to these missed polyps. Surface topography plays a vital role in identification and characterization of lesions, but topographic features often appear subtle to a conventional endoscope. Chromoendoscopy can highlight topographic features of the mucosa and has shown to improve lesion detection rate, but requires dedicated training and increases procedure time. Photometric stereo endoscopy captures this topography but is qualitative due to unknown working distances from each point of mucosa to the endoscope. In this work, we use deep learning to estimate a depth map from an endoscope camera with four alternating light sources. Since endoscopy videos with ground truth depth maps are challenging to attain, we generated synthetic data using graphical rendering from an anatomically realistic 3D colon model and a forward model of a virtual endoscope with alternating light sources. We propose an encoder-decoder style deep network, where the encoder is split into four branches of sub-encoder networks that simultaneously extract features from each of the four sources and fuse these feature maps as the network goes deeper. This is complemented by skip connections, which maintain spatial consistency when the features are decoded. We demonstrate that, when compared to monocular depth estimation, this setup can reduce the average NRMS error for depth estimation in a silicone colon phantom by 38% and in a pig colon by 31%.
Material decomposition for imaging multiple contrast agents in a single acquisition has been made possible by spectral CT: a modality which incorporates multiple photon energy spectral sensitivities into a single data collection. This work presents an investigation of a new approach to spectral CT which does not rely on energy-discriminating detectors or multiple x-ray sources. Instead, a tiled pattern of K-edge filters are placed in front of the x-ray to create spatially encoded spectra data. For improved sampling, the spatial-spectral filter is moved continuously with respect to the source. A model-based material decomposition algorithm is adopted to directly reconstruct multiple material densities from projection data that is sparse in each spectral channel. Physical effects associated with the x-ray focal spot size and motion blur for the moving filter are expected to impact overall performance. In this work, those physical effects are modeled and a performance analysis is conducted. Specifically, experiments are presented with simulated focal spot widths between 0.2 mm and 4.0 mm. Additionally, filter motion blur is simulated for a linear translation speeds between 50 mm/s and 450 mm/s. The performance differential between a 0.2 mm and a 1.0 mm focal spot is less than 15% suggesting feasibility of the approach with realistic x-ray tubes. Moreover, for reasonable filter actuation speeds, higher speeds are shown to decrease error (due to improved sampling) despite motion-based spectral blur.
Purpose: A prototype high-resolution extremity cone-beam CT (CBCT) system based on a CMOS detector was developed to support quantitative in vivo assessment of bone microarchitecture. We compare the performance of CMOS CBCT to an amorphous silicon (a-Si:H) FPD extremity CBCT in imaging of trabecular bone.
Methods: The prototype CMOS-based CBCT involves a DALSA Xineos3030 detector (99 μm pixels) with 400 μm-thick CsI scintillator and a compact 0.3 FS rotating anode x-ray source. We compare the performance of CMOS CBCT to an a- Si:H FPD scanner built on a similar gantry, but using a Varian PaxScan2530 detector with 0.137 mm pixels and a 0.5 FS stationary anode x-ray source. Experimental studies include measurements of Modulation Transfer Function (MTF) for the detectors and in 3D image reconstructions. Image quality in clinical scenarios is evaluated in scans of a cadaver ankle. Metrics of trabecular microarchitecture (BV/TV, Bone Volume/Total Volume, TbSp, Trabecular Spacing, and TbTh, trabecular thickness) are obtained in a human ulna using CMOS CBCT and a-Si:H FPD CBCT and compared to gold standard μCT.
Results: The CMOS detector achieves ~40% increase in the f20 value (frequency at which MTF reduces to 0.20) compared to the a-Si:H FPD. In the reconstruction domain, the FWHM of a 127 μm tungsten wire is also improved by ~40%. Reconstructions of a cadaveric ankle reveal enhanced modulation of trabecular structures with the CMOS detector and soft-tissue visibility that is similar to that of the a-Si:H FPD system. Correlations of the metrics of bone microarchitecture with gold-standard μCT are improved with CMOS CBCT: from 0.93 to 0.98 for BV/TV, from 0.49 to 0.74 for TbTh, and from 0.9 to 0.96 for TbSp.
Conclusion: Adoption of a CMOS detector in extremity CBCT improved spatial resolution and enhanced performance in metrics of bone microarchitecture compared to a conventional a-Si:H FPD. The results support development of clinical applications of CMOS CBCT in quantitative imaging of bone health.
Material decomposition in CT has the potential to reduce artifacts and improve quantitative accuracy by utilizing spectral models and multi-energy scans. In this work we present a novel Model-Based Material Decomposition (MBMD) method based on an existing iterative reconstruction algorithm derived from a general non-linear forward model. A digital water phantom with inserts containing different concentrations of calcium was scanned on a kV switching system. We used the presented method to simultaneously reconstruct water and calcium material density images, and compared the results to an image domain and a projection domain decomposition method. When switching voltage every other frame, MBMD resulted in more accurate water and calcium concentration values than the image domain decomposition method, and was just as accurate as the projection domain decomposition method. In a second, slower, kV switching scheme (changing voltage every ten frames) which precluded the use of traditional projection domain based methods, MBMD continued to produce quantitatively accurate reconstructions. Finally, we present a preliminary study applying MBMD to a water phantom containing vials of different concentrations of K2HPO4 which was scanned on a cone-beam CT test bench. Both the fast and slow (emulated) kV switching schemes resulted in similar reconstructions, indicating MBMD's robustness to challenging acquisition schemes. Additionally, the K2HPO4 concentration ratios between the vials were accurately represented in the reconstructed K2HPO4 density image.
Purpose: Atherosclerosis detection remains challenging in coronary CT angiography for patients with cardiac implants. Pacing electrodes of a pacemaker or lead components of a defibrillator can create substantial blooming and streak artifacts in the heart region, severely hindering the visualization of a plaque of interest. We present a novel reconstruction method that incorporates a deformable model for metal leads to eliminate metal artifacts and improve anatomy visualization even near the boundary of the component.
Methods: The proposed reconstruction method, referred as STF-dKCR, includes a novel parameterization of the component that integrates deformation, a 3D-2D preregistration process that estimates component shape and position, and a polyenergetic forward model for x-ray propagation through the component where the spectral properties are jointly estimated. The methodology was tested on physical data of a cardiac phantom acquired on a CBCT testbench. The phantom included a simulated vessel, a metal wire emulating a pacing lead, and a small Teflon sphere attached to the vessel wall, mimicking a calcified plaque. The proposed method was also compared to the traditional FBP reconstruction and an interpolation-based metal correction method (FBP-MAR).
Results: Metal artifacts presented in standard FBP reconstruction were significantly reduced in both FBP-MAR and STF- dKCR, yet only the STF-dKCR approach significantly improved the visibility of the small Teflon target (within 2 mm of the metal wire). The attenuation of the Teflon bead improved to 0.0481 mm-1 with STF-dKCR from 0.0166 mm-1 with FBP and from 0.0301 mm-1 with FBP-MAR – much closer to the expected 0.0414 mm-1.
Conclusion: The proposed method has the potential to improve plaque visualization in coronary CT angiography in the presence of wire-shaped metal components.
Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications.
The success and improved dose utilization of statistical reconstruction methods arises, in part, from their ability to incorporate sophisticated models of the physics of the measurement process and noise. Despite the great promise of statistical methods, typical measurement models ignore blurring effects, and nearly all current approaches make the presumption of independent measurements – disregarding noise correlations and a potential avenue for improved image quality. In some imaging systems, such as flat-panel-based cone-beam CT, such correlations and blurs can be a dominant factor in limiting the maximum achievable spatial resolution and noise performance. In this work, we propose a novel regularized generalized least-squares reconstruction method that includes models for both system blur and correlated noise in the projection data. We demonstrate, in simulation studies, that this approach can break through the traditional spatial resolution limits of methods that do not model these physical effects. Moreover, in comparison to other approaches that attempt deblurring without a correlation model, superior noise-resolution trade-offs can be found with the proposed approach.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.