The first transparent Optical-subTHz-Optical link providing record-high line-rates of 240 and 190 Gbit/s over distances from 5 to 115 m was recently demonstrated. The link has been based on a direct data-conversion from optical to subTHz using a > 500 GHz plasmonic Mach-Zehnder modulator. We discuss the potential of plasmonic devices in subTHz wireless links to efficiently bridge optical fiber networks.
All envisaged practical implementations of cryogenic processors, including quantum computers and classical processors based on single flux quantum (SFQ) signals, require massive data transfer from and to classical high performance computers (HPCs). Cryogenic computing has recently become a very hot topic, including superconducting quantum computers (QCs), and classical processors based on single flux quantum (SFQ) signals. All envisaged practical implementations of cryogenic processors require massive data transfer from and to classical HPCs. The project aCryComm aims to develop building blocks for cryogenic photonics interconnects and eventually enable this challenging data transfer. The long-term goal is the development of an open-access platform to integrate classical optical interfaces based on low-loss silicon photonics, plasmonics, and nano light sources together with superconducting photonic and electronic devices, including SFQ-based co-processors for HPCs and for QCs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.