Light-evoked functional retinal imaging is of great interest in clinical and experimental ophthalmology because the alterations in retinal function hold the promise of being potentially more sensitive for disease diagnosis than purely morphology-based assays. Recent progress in Optoretinography (ORG), a technique employing OCT to extract light-evoked functional response of retinal tissue, promises to provide the needed sensitivity to probe early alterations in retinal function. The most promising implementations of the ORG probing of photoreceptor function in clinical settings are using parallel OCT detection schemes such as Line Field and Full Field designs. Herein, we present the instrumentation scheme of a Full-Field-Swept-Source OCT (FF-SS-OCT) system incorporating a high-precision light stimulation channel for facilitating phase-based functional retinal imaging in mice. The assessment of the OCT signal phase errors and their correction using short-time Fourier transform (STFT) is detailed. The performance of the system is investigated using a model eye.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.