We provide background on differences between traditional and machine learning modeling. We then discuss how these differences impact the different validation needs of traditional and machine learning OPC compact models. We then provide multiple diverse examples of how machine learning OPC compact validation modeling can be appropriately validated both for modeling-specific production requirements such as model signal/contour accuracy, predictiveness, coverage and stability; and also general OPC mask synthesis requirements such as OPC/ILT stability, convergence, etc. Finally we conclude with thoughts on how machine learning modeling methods and their required validation methods are likely to evolve for future technology nodes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.