Extreme Ultra Violet (EUV) lithography is one of the most promising candidate technologies for the high-volume manufacturing (HVM) of semiconductor devices at the sub-14 nm half pitch lines and spaces (LS) pattern for 7 nm node and beyond. EUV resists is strongly required high resolution (R) with high sensitivity (S) and low line edge/ width roughness (L) for HVM application. Experimental results on chemically amplified (CA) resist will be shown to study the influence of proton source, photo acid generator (PAG) cation and the other materials on lithographic performance, and then resist formulation designed for improving RLS trade-off will be discussed.
Extreme Ultra Violet (EUV) Lithography is being thought to be one of the most promising candidate technologies to replace current optical lithography for the high-volume manufacturing of semiconductor devices at the 10 nm node and below. Through-put still seems to be under the target, so EUV resist materials are strongly required high resolution (R) with high sensitivity (S) and low line edge/width roughness (L). However, the chemically amplified resists should overcome RLS-trade-off. We focused on the development of EUV resist by the combination of the low activation energy protecting group (PG) and high quantum yield PAG for overcoming RLS trade-off.
We report the development and applications of ArF negative tone resist for ArF immersion lithography. New developed
topcoat-free ArF negative tone resists has sufficient water repellent capability that is applicable to over 700mm/s scan
speed water immersion exposure tool and suitable leaching suppression capability within reaching specification of
exposure tool. We demonstrated lithographic performance of topcoat-free negative tone resist utilizing 1.07NA
immersion tool and confirmed the lithographic window of 55nm 1L1S and 50nm 1L1S. And 27.4nm of isolated space
pattern at over dose condition of 55nm 1L1S patterning. This result shows the possibility of topcoat free negative tone
resist for dual trench based litho-etch-litho-etch double patterning. Additionally we have demonstrated contact hole
patterning utilizing double exposure and generated 65nm gridded contact hole patterns utilizing 0.92NA ArF scanner
with applicable pattern profiles.
Double patterning based on existing ArF immersion lithography is considered the most viable option for 32nm and below CMOS node. Most of double patterning approaches previously described require intermediate process steps like as hard mask etching, spacer material deposition, and resist freezing. These additional steps can significantly add to the cost of production applied the double patterning. In this paper, pattern freezing free litho-litho-etch double patterning process is investigated to achieve a narrow pitch imaging without the intermediate processing steps. Pattern freezing free litho-litho-etch double patterning utilizing positive-positive resist combination demonstrated composite pattern generation.
Polymers with methyl acetal ester moiety in the side chain as acid labile protecting group were synthesized and their thermal property, plasma stability and chemical amplification (CA) positive-tone resist characteristics were investigated. 2-Admantyloxymethyl (AdOM) groups in the copolymer indicated lower glass transition temperatures and higher thermal decomposition temperatures than those of 2-methyl-2-admantyl (MAd) groups in the copolymer. AdOM polymer film showed smooth surface roughness after Ar plasma exposure compared with MAd polymer film due to the high thermal stability. The activation energies (Ea) of these deprotection reactions were calculated from Arrhenius plots of these deprotection reaction rate constants. In the low post exposure bake (PEB) temperature region, the Ea of these resists decreased in the order MAd > AdOM. The low Ea methyl acetal resists displayed good thermal flow resist characteristics for contact holes printing. In addition, the low Ea methyl acetal resist achieved a wide exposure latitude of 8.1 % and depth of focus of 400 nm for printing 80 nm 1:1 dense line pattern using NSR-306C (NA 0.78, 2/3 annular). Furthermore, the 65 nm 1:1 dense lines using ASML XT1400 (NA 0.93, C-Quad) for low Ea methyl acetal resist pattern showed no tapered and no footing profiles and small roughness on the lines pattern sidewall was observed.
We have investigated the possibility of amorphous low molecular weight polyphenols as a chemically amplified positive-tone electron-beam (EB) resist. Low molecular weight polyphenol, 4'4-methylenebis{2-[di(2-methyl-4-hydroxy-5-cyclohexylphenyl)]methyl} phenol (3M6C-MBSA) as a base matrix, was protected by 1-ethoxyethyl (EE) groups to control the dissolution rate in 0.26 N tetramethylammonium hydroxide aq. developer. The film distribution in the depth direction for resist components with a Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and the Fourier amplitude spectra of line-edge roughness (LER) have been investigated to understand the relationship between them for the resists formulated with 3M6C-MBSA and two types of photo acid generator (PAG), triphenylsulfonium perfluoro-1-butanesulfonate (TPS-PFBS) and triphenylsulfonium n-octanesulfonate (TPS-nOS). From these results, it was found that the resist film consisting of TPS-nOS showed more homogeneous in the depth film distribution than that with TPS-PFBS, and the resist with TPS-nOS also indicated the suppressed LER value of 5.1 nm in the wide frequency range. Therefore, the homogeneity of the resist film may affect the pattern LER.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.