Multi-beam laser interference lithography (MB-LIL) is a rapid and cost-effective maskless optical lithography technique
to parallelly pattern periodic or quasi- periodic micro/nano-structured material over large areas more than square
centimetres. An interference pattern between two or more coherent laser beams is set up and recorded in a recording
material of substrate. This interference pattern consists of a periodic series of geometries representing intensity minima
and maxima. The patterns that can be formed depend on the number and configuration of laser beams. This review
introduces the development and application of MB-LIL system for fabrication of micro/nano-structured material. At first,
it surveys various types of MB-LIL methods by classifying different beam configurations. Then the paper shows some
application results for fabrication 2D/3D micro/nano structure arrays by means of interference patterns with multi-exposed
or directly ablation technique. The patterend micro/nano-structure arrays include crossed diffraction grating
array in photoresist, 3D pattern in polymetric photonic crystals, and magnetic nanoarrays in thin film. Finally, an
innovative four-beam LIL system is introduced, which is being developed within the EC-granted project DELILA.
This paper presents a reference pattern-based two-dimensional (2D) measurement method. In the method, surface structure patterns obtained from a four-beam laser interference lithography (LIL) process were used as reference patterns for 2D measurement. The reference patterns played the role of 2D rulers in the measurement. The nano resolution of the measurement was achieved by feature counting and pattern matching techniques. A statistical analysis indicates that the measurement made by pattern matching has the advantage of averaging noise. For reference pattern-based 2D measurement, the reference patterns can be regular or irregular. This approach is potentially useful for micro and nano manipulation in the processes of assembly, packaging and manufacturing of nano and micro-systems when relative nano positioning accuracy is required.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.