We develop a fiber optical coherence tomography (OCT) system in the clinical utility of imaging port wine stains (PWS). We use our OCT system on 41 patients with PWS to document the difference between PWS skin and contralateral normal skin. The system, which operates at 4 frames/s with axial and transverse resolutions of 10 and 9 µm, respectively, in the skin tissue, can clearly distinguish the dilated dermal blood vessels from normal tissue. We present OCT images of patients with PWS and normal human skin. We obtain the structural parameters, including epidermal thickness and diameter and depth of dilated blood vessels. We demonstrate that OCT may be a useful tool for the noninvasive imaging of PWS. It may help determine the photosensitizer dose and laser parameters in photodynamic therapy for treating port wine stains.
High power laser-diode-pumped 532nm laser sources (including continuous wave and high repetition rate operation) are directly used for precise processing of metals and plastics. Furthermore, high power green laser will be used in some fields such as ocean exploration, laser probe and underwater communication. Recently, we reported a 110W diode-side-pumped Nd:YAG intracavity frequency doubled high stability 532nm laser. In the experiment, we found that the average output power of second harmonic fluctuated acutely with the variety of pumping current. Moreover, the length of arms between the mirrors were very sensitive to this cavity. We consider that one of the reason is the focus length of thermal lens of Nd:YAG rod alter with the variational pumping current, which makes the cavity be unstable. We consider the KTP crystal as a thin lens for its short length. As thermal lensing effect of the Nd:YAG rod is quite severe, so we consider it as thermal lensing medium. By ray matrix methods, we have obtained the stable regions and beam waist radii distribution in the flat-concave cavity. In our experiment, we used a pump head consisting of 80 diode bars with pentagon pump model and employed flat-concave cavity structure in order to achieve high stability output and increase output power. The total cavity length is 505mm. By using an acousto-optic Q-switching with high diffraction loss and the KTP crystal which is type II phase matching, 110 W high stability 532nm laser is achieved. The experimental result is in good agreement with the calculation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.