Substantia nigra (SN) has been reported as significantly related to the progression of Parkinson’s Disease (PD). Fully automated segmentation of SN is an important step for developing an interpretable computer-aided diagnosis system for PD. Based on the deep learning techniques, this paper proposes a novel distance-reweighted loss function and combines it with the test-time normalization (TTN) to boost the fully automated SN segmentation accuracy from low contrast T2 weighted MRI. The proposed loss encourages the model to focus on the suspicious regions with vague boundaries, and the involved TTN narrows the gap between an input MRI volume and the reference MRI volumes in test-time. The results showed that both the proposed loss and TTN could help improve the segmentation accuracy. By combining the proposed loss and TTN, the averaged Dice coefficient achieved 70.90% from T2 weighted MRI, compared to 68.17% by the baseline method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.