Laser Powder Beam Fusion (LPBF)processes use laser beams to selectively melt powder layers and build three dimensional parts layer by layer. Usually, the beam has a Gaussian profile and the melt temperature peaks near the beam center. For typical conditions this temperature is well over the boiling point and drives intensive evaporation. Evaporation-driven recoil momentum can produce detrimental material spattering and keyhole porosity. Evaporation itself consumes a significant amount of energy thus degrading the process efficiency. It can therefore be beneficial to alter the beam shape so as to have the temperature distribution in the melt pool close to that of a flat top. We determined with a simple thermal model the beam shape providing a relatively flat temperature distribution . The optimal is found to be doughnut mode-like, skewed in the scan direction.
We did high fidelity simulations of the melt pool produced by the optimized beam and evaluated the possible benefits, including the efficiency increase.
We started the experiments with doughnut shape beam far from the optimal but also far from the Gaussian one. The experimental data will be compared with simulation results.
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Localized heating of roughened steel surfaces using highly divergent laser light emitted from high-power laser diode arrays was experimentally demonstrated and compared with theoretical predictions. Polarization dependence was analyzed using Fresnel coefficients to understand the laser-induced temperature rise of HY-80 steel plates under 383- to 612-W laser irradiation. Laser-induced, transient temperature distributions were directly measured using bulk thermocouple probes and thermal imaging. Finite-element analysis yielded quantitative assessment of energy deposition and heat transport in HY-80 steel using absorptivity as a tuning parameter. The extracted absorptivity values ranged from 0.62 to 0.75 for S-polarized and 0.63 to 0.85 for P-polarized light, in agreement with partially oxidized iron surfaces. Microstructural analysis using electron backscatter diffraction revealed a heat affected zone for the highest temperature conditions (612 W, P-polarized) as evidence of rapid quenching and an austenite to martensite transformation. The efficient use of diode arrays for laser-assisted advanced manufacturing technologies, such as hybrid friction stir welding, is discussed.
The modeling of laser interaction with metals for various applications requires a knowledge of absorption coefficients for real, commercially available materials with engineering grade (unpolished, oxidized) surfaces. However, most currently available absorptivity data pertain to pure metals with polished surfaces or vacuum-deposited thin films in controlled atmospheres. A simple laboratory setup is developed for the direct calorimetric absorptivity measurements using a diode-array laser emitting at 780 nm. A scheme eliminating the effect of convective and radiative losses is implemented. The obtained absorptivity results differ considerably from existing data for polished pure metals and are essential for the development of predictive laser-material interaction models.
Resonance transition rubidium laser (52P1/2→52S1/2) is demonstrated with a hydrocarbon-free buffer gas. Prior
demonstrations of alkali resonance transition lasers have used ethane as either the buffer gas or a buffer gas component
to promote rapid fine-structure mixing. However, our experience suggests that the alkali vapor reacts with the ethane
producing carbon as one of the reaction products. This degrades long term laser reliability. Our recent experimental
results with a "clean" helium-only buffer gas system pumped by a Ti:sapphire laser demonstrate all the advantages of the
original alkali laser system, but without the reliability issues associated with the use of ethane. We further report a
demonstration of a rubidium laser using a buffer gas consisting of pure 3He. Using isotopically enriched 3He gas yields
enhanced mixing of the Rb fine-structure levels. This enables efficient lasing at reduced He buffer gas pressure,
improved thermal management in high average power Rb lasers and enhanced power scaling potential of such systems.
An optical resonance transition rubidium laser (52P1/2 → 52S1/2) is demonstrated with a hydrocarbon-free buffer gas. Prior demonstrations of alkali resonance transition lasers have used ethane as either the buffer gas or a buffer gas component to promote rapid fine-structure mixing. However, our experience suggests that the alkali vapor reacts with the ethane producing carbon as one of the reaction products. This degrades long term laser reliability. Our recent experimental results with a "clean" helium-only buffer gas system pumped by a Ti:sapphire laser demonstrate all the advantages of the original alkali laser system, but without the reliability issues associated with the use of ethane.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.