This will count as one of your downloads.
You will have access to both the presentation and article (if available).
In the proposed method parallel plate capacitors are used to transfer power across the encapsulation layer to the sensor, removing any need for protruding wires or cable glands. With one electrode placed within the encapsulation and the second connected to the sensor, sensors are replaceable even underwater. To maintain sensor performance however, a relatively high capacitance is required. For example if the coupling capacitance is 20x greater than sensor capacitance, sensitivity is reduce by approximately 20%. Whereas if the coupling capacitance is only 10x greater, sensitivity is reduced by 40%. Due to these high capacitance requirements combined with the area and weight restrictions of wearable applications, we have investigated the practicality of implementing capacitive coupling. A capacitive coupling interface has been developed and tested with dielectric elastomer sensors underwater. Analysis of the interface's impact on sensor sensitivity, measurement electronics and overall coupling capacitor size is presented.
The actuation of dielectric elastomer actuators (DEAs) in conductive liquids is also investigated. An analysis of the equivalent electrical circuits of immersed DEAs shows that non-overlapping regions of the electrodes should be minimized. It also provides guidelines to determine when the electrodes should be passivated. The effects of immersion in a conductive liquid are assessed by measuring the actuation strain and capacitance over periodic actuation. The experimental results show no sign of liquid-induced degradation over more than 45k actuation cycles.
View contact details
No SPIE Account? Create one